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A B S T R A C T

This study investigated the effect of different temperatures and different nitrogen 

concentrations on the lipid content and biomass of Chlorella microalgae. In this study, algae 

were cultured in five media with different amounts NaNO3 as 3, 1.5, 0.80, 0.40 g/L, and three 

temperatures (10, 20, 30 °C). The results of the experiments showed that the optimal 

temperature and nitrogen concentration for the biomass increase in Chlorella vulgaris are 30°C 

and 3 g/L, respectively. It was observed that biomass decreased and lipid amount increased 

due to the decrease in nitrogen concentration. The high lipid amount of 20.80% dry weight 

(DW) was obtained from the algae produced at 30°C in the free-nitrate medium. The 

contribution of temperature change to lipid production was not as effective as nitrogen 

deficiency in the study. According to the fatty acid analysis results made by GC-FID, C. 

vulgaris seems suitable for biodiesel production because it contains medium-length (C16-C18) 

fatty acid chains. 

INTRODUCTION 

The world population is increasing day by day, and it is 

predicted that the world population will increase by 1.5 times 

in 2050 (Sajjadi et al., 2018). Fossil fuel reserves, which use for 

a significant part of the energy need in the world, are rapidly 

being depleted. The efficient use of energy is even more vital 

today due to the rapid decrease in fossil fuels and the increase 

in fuel demand (Widjaja et al., 2009). In addition to the 

depletion of oil reserves, another essential issue that should 

not neglect is the rapidly emerging environmental pollution 

(Liew et al., 2014). Therefore, the production and use of 

environmentally friendly, renewable, and sustainable energy 

resources are supported worldwide. Most of the renewable 

energy sources such as biodiesel, bioethanol, and 

biohydrogen are produced from plant sources. However, 

since more than 95% of its production produces in vital soil 

resources or arable lands required for living creatures and 

depletes freshwater used in irrigation, it is more harmful to 

both environment and economy (Sajjadi et al., 2018). In this 

case, the importance of alternative biofuel sources has 

increased. The most striking of these alternative sources 

recently are algae. Microalgae can produce lipids without the 

need for arable land. Microalgae are much more 

advantageous than terrestrial plants for potentially 

producing biodiesel in all regions of the World (Metting, 

1996). Therefore, microalgae are considered an important 
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source of raw material for biodiesel (Li et al., 2008). However, 

not every microalgae species can be produced easily and 

quickly. The microalgae species selected for biodiesel 

production should both be able to increase its biomass 

rapidly and have high lipid content. However, algae 

containing a high number of lipids grow more slowly than 

those with low content (Vasudevan & Briggs, 2008; Deng et 

al., 2009). Chlorella is the first to come to mind because it can 

both produce rapidly, and its lipid content reaches 

approximately 14 to 22% of its dry weight when produced 

under normal conditions (Illman et al., 2000; Spolaore et al., 

2006). Nevertheless, the quality and quantity of algal lipids 

exhibit changes depending on various environmental 

conditions such as temperature, nutrient, light intensity

(Illman et al., 2000; Liu et al., 2008; Seyhaneyildiz Can et al., 

2015).  

Many studies have been conducted on the role of nitrogen 

and temperature in algal lipid accumulation (Dong et al., 

2013; Olofsson et al., 2014). In the study conducted to 

determine the effect of nitrogen on lipid accumulation, it was 

observed that microalgal growth was negatively affected by 

nitrogen deficiency, whereas lipid accumulation increased 

(Lombardi & Wangersky 1991). The increases in lipid content 

vary by species (El-Baky et al., 2004; Pal et al., 2011; Olofsson 

et al., 2014). Also, nitrogen is the limiting factor for 

developing many species (Li et al., 2010; Park et al., 2012). 

Another important factor is temperature. Temperature is one 

of the environmental factors affecting algal development and 

lipid accumulation. Again, the effect of temperature on 

biomass and lipid accumulation varies from species to 

species (Xin et al., 2010; Park et al., 2012; Roleda et al., 2013).  

The main objective of this study is to examine the 

synergistic or antagonistic effects of nitrogen and 

temperature on growth rate and lipid productivity of 

Chlorella vulgaris. For this purpose, C. vulgaris was cultivated 

at three temperatures using nutrient media containing five 

nitrogen concentrations. Additionally, optimum temperature 

and nitrogen concentration have been determined for both 

biomass production and lipid accumulation to determine the 

suitability for biodiesel production. 

The main objective of this study is to examine the 

synergistic or antagonistic effects of nitrogen and 

temperature on growth rate and lipid productivity of 

Chlorella vulgaris. For this purpose, C. vulgaris was cultivated 

at three temperatures using nutrient media containing five 

nitrogen concentrations. Additionally, optimum temperature 

and nitrogen concentration have been determined for both 

biomass production and lipid accumulation to determine the 

suitability for biodiesel production. 

 MATERIAL AND METHODS 

Microalgae 

C. vulgaris Beijerinck (Chlorophyceae) used in the study

was isolated from a fish pond in Ege University, Faculty of 

Fisheries, Izmir, Turkey. The isolated algae were transferred 

from agar plate prepared with f/2 nutrient medium (Guillard, 

1975) to liquid culture medium. 

Culture System 

Trials were conducted in triplicate in 1000 mL Erlenmeyer 

flasks with 500 mL f/2 medium at different temperatures (10, 

20, 30 °C) and different nitrogen concentrations (3, 1.5, 0.8, 0.4 

g/L, and nitrate-free) to investigate the effects of nitrogen 

deficiency and temperature on biomass and lipid yield. All 

glassware and nutrient media used in the trials were 

sterilized by autoclaving for 15 min, at 121°C, 1-atmosphere 

steam pressure, to prevent contamination during production, 

and they were kept at room temperature for 24 h before 

inoculation. Algae in 20 mL test tubes were inoculated into 

1mL Erlenmeyer flasks. The continuously aerated culture 

medium was kept constant at pH 7.5 with sodium 

bicarbonate and HCl buffer solution. In the 18-day 

experiment, the light intensity of 33.6 μmol photon was 

applied continuously to all experimental groups, and the 

cultures were shaken twice a day to prevent algae 

precipitation. 

Microalgal Biomass Concentration 

Algal dry weight was measured daily by a precision 

balance (Precisa XB 220A) for 18 days. Before measuring the 

dry weight, the algae were filtered with filtration papers, 

then washed with distilled water and dried at 100°C for 12 h 

(Lee, 1998). All measurements were conducted in triplicate. 

At the end of the culture period, all algal biomass was 

centrifuged at 4000 rpm for 5 min using a TD3 (800B) 

centrifuge. The algal biomass was washed with distilled 

water three times to cleaned biomass from nutrient media, 

and they were dried stored at −20°C for later analysis (Lee, 

1998). 

Cell Disruption and Lipid Extraction 

Before starting to break up dried algae cells, 5 mL 

phosphate buffer solution (pH 7.4) was added to prevent side 

reactions. An aliquot (1 g) of the dry cell biomass was broken 

up in Bead-beater at 4800 rpm for 3 min. The algae broken up 

in Bead-beater were removed into centrifuge tubes, and 6 ml 

hexane per 1 g dry algae was added and centrifuged at a 

high-speed of 4000 rpm for 5 min. After 24 h, residual 

microalgae were separated from the lipid-hexane mixture 

using a filter paper with 0.50 μm mean pore diameter. The 
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hexane in the hexane-lipid mixture was evaporated at 60°C, 

and the remaining lipid was measured gravimetrically. Lipid 

amount was determined in terms of the percentage of dry 

weight (Lee, 1998). 

Fatty Acid Composition 

To determine the fatty acid compositions of lipids were 

used Perkin Elmer Clarus 500 gas chromatography (GC-FID) 

and fused silica RTX-2330 capillary column (30 m × 0.25 mm 

i.d. × 0.25 μm film thickness; Restek Corp., Bellefonte, PA,

USA). Instrument check-out and determination of fatty acids 

of the samples was accomplished with a 37-component 

mixture (Supelco number 18919). As a carrier, helium was 

used at an injection-split ratio of 1/50 and a gas flow rate of 

1.0 mL/min. The gas chromatography column was started to 

be heated. When the column temperature reached 100°C, 1 

μL of the extracted lipids were injected. The column 

temperature was increased at 5°C/minutes from 100 to 180°C 

(for 10 min), and then to 250°C (for 20.7 min) at 3°C/minutes. 

Statistical Analysis 

The dry weight and the extracted lipid contents from the 

five groups were compared using a one-way ANOVA and 

Duncan’s multiple comparison method. The level of 

significant difference was at P<0.05. 

Figure 1. The dry weight of C. vulgaris cultured at 10°C 

Figure 2. The dry weight of C. vulgaris cultured at 20°C 
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Figure 3. The dry weight of C. vulgaris cultured at 30°C 

Figure 4. The total lipid amount of C. vulgaris cultured at different temperatures 

RESULTS 
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Table 1. Growth and lipid values for C. vulgaris microalgae cultured at different temperatures (mean ± standard deviation) 

NaNO3 (g/L) 
10°C 20°C 30°C 

DW (g/L) Lipid (% DW) DW (g/L) Lipid (% DW) DW (g/L) Lipid (% DW) 

3 0.273a±0.06 7.53c±0.38 1.371a±0.75 6.700c±0.20 1.735a±0.87 8.80c±0.53 

1.5 0.268a±0.05 8.07c±0.71 1.221a±0.59 7.367c±0.25 1.487b±0.69 9.40c±0.69 

0.8 0.263ab±0.06 9.20bc±1.40 0.976b±0.44 7.933c±0.50 1.209c±0.49 12.00b±0.53 

0.4 0.2681a±0.05 10.6ab±0.53 0.544c±0.17 14.467b±1.10 0.788d±0.34 19.00a±1.22 

Nitrate-free 0.245b±0.05 12.2a± 1.25 0.439c±0.07 16.933a±1.10 0.674d±0.22 20.80a±2.09 

Note: Different superscript letters (a, b, c, d) indicate that the values of the means in the table are significantly different P<0.05 

the most efficient group in terms of lipid is the algae cultured 

in the nitrate-free nutritional medium at 30°C (Figure 4). In 

terms of biomass, the most productive group is algae 

cultured in a nutrient medium containing 3 g/L nitrate at 

30°C (Table 1).  

In this study, both the optimum and adverse conditions 

were created on algae to observe the change in lipid amounts. 

The following equation (1) was used to find the most efficient 

group in terms of lipid production in studies.  

𝐿𝑖𝑝𝑖𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑔) =
𝐷𝑊(𝑔)×𝑙𝑖𝑝𝑖𝑑(𝐷𝑊%)

100
(1) 

According to the equation, it was determined that the 

most efficient group for both biomass and lipid is the culture 

in a nutrient medium of 3 g/L nitrates at 30°C (Table 1). 

Table 2. The fatty acid content and concentration of C. 

vulgaris 

Fatty acids Fatty acid concentration (%) 

Linoleic acid 23.89±0.04 

Margaric acid 0.86±0.06 

Miristoleic acid 1.66±0.03 

Oleic acid 4.24±0.08 

Palmitic acid 32.72±0.06 

Palmitoleic acid 3.88±0.007 

Stearic acid 10.15±0.006 

Trans linolenic acid 20.76±0.004 

Undecanoic acid 1.84±0.004 

Fatty acid compositions of the lipids obtained from the 

most efficient group were determined by GC-MS (Table 2). 

Biodiesel is defined as fatty acid alkyl esters (FAAEs) derived 

from vegetable and animal oils. Biodiesel is mainly esters of 

six fatty acids: palmitic acid (C16: 0), stearic acid (C18: 0), 

oleic acid (C18: 1), linoleic acid (C18: 2), and linolenic acid 

(C18: 3) (Chuck et al., 2009). Table 2 shows that most fatty 

acids of C. vulgaris are essential fatty acids for biodiesel 

production. These results demonstrate that C. vulgaris is an 

appropriate species for biodiesel production. 

DISCUSSION 

Differences in the culture environment affect the biomass 

and cell contents of algae. Changes in algal growth and lipid 

production of cells have been more pronounced, particularly 

in nitrate deficiency, the essential nutrient (Pinto et al., 2003; 

Ip and Chen, 2005). All studies conducted with microalgae, it 

has been observed that algae accumulate lipids, especially 

triglycerides, despite nitrogen deficiency (Hsieh and Wu, 

2009; Yeh and Chang, 2011; Sun et al., 2014). In this study, the 

response of C. vulgaris to varying nitrate concentrations was 

investigated. Dry biomass weight was used for C. vulgaris 

growth assessment. Results indicated that biomass decreased 

in response to declining nitrate concentrations, but 

conversely, lipid production increased. Similarly, other 

studies were reported that the growth of Chlorella pyrenoidosa 

and Scenedesmus obliquus decreased growth under nitrogen-

deficient conditions (Mandal and Mallick, 2009; Nigam et al., 

2011). In this study, there is an inverse relationship between 

the lipid produced by algae and nitrate concentration. The 

reason can be expressed as algae modifying their lipid 

metabolism to adapt to adverse conditions occurring in 

culture conditions (Su et al., 2011).  

However, one of the main factors affecting the growth of 

fatty acids, lipids, and species produced by microalgae is the 

temperature (Renaud et al., 2002; Converti et al., 2009; Taoka 

et al., 2009). In this study, besides the nitrate concentration, 

the effect of different temperatures on the algae biomass and 

lipid content was also investigated. Algal biomass increased 

with temperature. However, the effect of temperature on 

lipid production was not significant as on algal growth. 

However, lipid production at 30°C was higher in all groups 

compared to other temperatures. The differences in both 

temperature and nitrogen concentration in the experiments 

made stress on C. vulgaris, and this stress caused a response 

as increased lipid accumulation. As seen in the literature, 

Illman et al. (2000) and Liu et al. (2008) reported that the 

amount and content of lipids inside the cell vary depending 

on factors temperature or light intensity. Temperature affects 

the physiological process by changing the speed and stability 
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of the chemical reactions of cellular components. However, 

this effect also depends on the strain species (Sandnes et al., 

2005; Griffiths and Harrison, 2009; Van et al., 2012). 

In this study, the suitability of C. vulgaris for biodiesel 

production was also tried to be determined. Therefore, the 

answer to the question of how to increase biomass and the 

amount of lipid was sought. Because biomass production is 

as significant as lipid accumulation for the efficiency of the 

study. We observed that the most productive group in terms 

of both biomass and lipid was the algae grown in medium 

with 3 g/L nitrogen at 30°C. Fatty acid analysis of this most 

productive group was made. The fatty acid profile of an alga 

determines the usage areas of that alga. For example, it is 

harmful to use an oil with a high erucic acid content as a food 

raw material. On the other hand, polyunsaturated fatty acids 

are highly nutritionally valuable (Sissener et al., 2018). Oils 

containing excessive amounts of free fatty acids reduce 

biodiesel yield by producing soap in reactions with alkali 

catalysts. Therefore, triglycerides containing long-chain fatty 

acids and oils containing less free fatty acids are preferred for 

biodiesel production (Ekin, 2019). According to the fatty acid 

analysis results of C. vulgaris in our study, it was seen that it 

contains high amounts of long-chain fatty acids (Table 2). 

CONCLUSION 

It was interesting data that lipid production increases by 

reducing nitrogen in the nutrient media. It was also 

noteworthy that the temperature was not as effective as 

nitrogen. However, if we want to produce fuel that can 

compete with petroleum both ecologically and economically, 

we must make a product that is more cost-effective and more 

environmentally friendly. For example, algae can be 

produced in wastewater. Thus, while the nutrient medium 

required for algal biomass is taken from wastewater, the 

polluting effects of wastewater are also reduced. Or, algae 

production facilities can be established in areas where the 

industry is concentrated, and thus, algae can reduce 

industry-source carbon dioxide. As the number of such 

applications to be conducted on a commercial scale increases, 

the biodiesel obtained from algal lipids will be superior to 

petroleum-based fuel. 
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