Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2020, Vol. 1(1) 56-60

Investigation of the Effect of Lead Adsorption on Surface Modified Fish Bones

Bayram Kızılkaya & Evren Tan

pp. 56 - 60   |  DOI: https://doi.org/10.29329/actanatsci.2020.313.7   |  Manu. Number: MANU-2101-09-0005

Published online: December 31, 2020  |   Number of Views: 15  |  Number of Download: 153


Abstract

This study investigates lead (Pb) elimination of surface modified fish bones as a biogenic apatite source. Surface modification was performed with 4-Aminohippuric acid (MBA1) and 2-Thiophenecarboxaldehyde (MBA2). In this study, different methods were used for surface modification. Apart from that, lead elimination was performed by the method of adsorption in aqueous solution. It is detected that both of the modified materials eliminate as 7.16 mg/g in 50 mgL-1 lead solution. It was determined that MBA1 and MBA2 materials removed 99.9% of the lead in solution. In conclusion, it is seen that waste fish bones, which are regarded as worthless, can be applied to the chemical modifications and they can be transformed into useful materials. It is possible to say that transforming them into economic, efficient, qualified and useful materials can contribute environment.

Keywords: Surface modification, Fish bone, Apatite, Lead


How to Cite this Article?

APA 6th edition
Kizilkaya, B. & Tan, E. (2020). Investigation of the Effect of Lead Adsorption on Surface Modified Fish Bones . Acta Natura et Scientia, 1(1), 56-60. doi: 10.29329/actanatsci.2020.313.7

Harvard
Kizilkaya, B. and Tan, E. (2020). Investigation of the Effect of Lead Adsorption on Surface Modified Fish Bones . Acta Natura et Scientia, 1(1), pp. 56-60.

Chicago 16th edition
Kizilkaya, Bayram and Evren Tan (2020). "Investigation of the Effect of Lead Adsorption on Surface Modified Fish Bones ". Acta Natura et Scientia 1 (1):56-60. doi:10.29329/actanatsci.2020.313.7.

References
  1. Alasbeb, S., Banat, F., & Mobai, F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere, 39(12), 2087-2096. https://doi.org/10.1016/S0045-6535(99)00098-3 [Google Scholar] [Crossref] 
  2. Baccar, R., Bouzid, J., Feki, M., & Montiel, A. (2009). Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. Journal of Hazardous Materials, 162(2-3), 1522–1529. https://doi.org/10.1016/j.jhazmat.2008.06.041 [Google Scholar] [Crossref] 
  3. Bailey, S., Olin, T. R., & Dean, M. A. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479. https://doi.org/10.1016/S0043-1354(98)00475-8 [Google Scholar] [Crossref] 
  4. Banat, F., Asheh, S. A., & Mohai, F. (2000). Batch zinc removal from aqueous solution using dried animal bones. Separation and Purification Technology, 21(1-2), 155-164. https://doi.org/ 10.1016/S1383-5866(00)00199-4 [Google Scholar] [Crossref] 
  5. Chojnacka, K. (2005). Equilibrium and kinetic modelling of chromium (III) sorption by animal bones. Chemosphere, 59(3), 315–320. https://doi.org/10.1016/j.chemosphere.2004.10.052 [Google Scholar] [Crossref] 
  6. Corami, A., D’Acapito, F., Mignardi, S., & Ferini, V. (2008). Removal of Cu from aqueous solutions by synthetic hydroxyapatite: EXAFS investigation. Materials Science and Engineering B, 149(2), 209–213. https://doi.org/ 10.1016/j.mseb.2007.11.006 [Google Scholar] [Crossref] 
  7. Dimovic, S., Smiciklas, I., Plecas, I., Antonovic, D., & Mitric, M. (2009). Comparative study of differently treated animal bones for Co2+ removal. Journal of Hazardous Materials, 164(1), 279–287. https://doi.org/10.1016/ j.jhazmat.2008.08.013 [Google Scholar] [Crossref] 
  8. Donat, R., Akdogan, A., Erdem, E., & Cetisli, H. (2005). Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science, 286(1), 43–52. https://doi.org/10.1016/j.jcis. 2005.01.045 [Google Scholar] [Crossref] 
  9. Janga, S. H., Jeonga, Y. G., Mina, B. G., Lyoob, W. S., & Leea, S. C. (2008). Preparation and lead ion removal property of hydroxyapatite/ polyacrylamide composite hydrogels. Journal of Hazardous Materials, 159(2-3), 294–299. https://doi.org/10.1016/j.jhazmat.2008.02.018 [Google Scholar] [Crossref] 
  10. Kaushal, M., & Tiwari, A. (2010). Removal of rhodamine-B from aqueous solution by adsorption onto crosslinked alginate beads. Journal of Dispersion Science and Technology, 31(4), 438–441. https://doi.org/10.1080/ 01932690903210135 [Google Scholar] [Crossref] 
  11. Kizilkaya, B., Tekinay, A. A., & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination, 264(1-2), 37-47. https://doi.org/ 10.1016/j.desal.2010.06. 076 [Google Scholar] [Crossref] 
  12. Kizilkaya, B., Ucyol, N., & Tekinay, A. A. (2016). Surface modification of biogenic hydroxyapatite particles with 2-thiophenecarboxaldehyde. Environmental Science: An Indian Journal, 12(7), 1-10. [Google Scholar]
  13. Mahmoodi, N. M., Salehi, R., & Arami, M. (2011). Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination, 272(1-3), 187-195. https://doi.org/10.1016/j.desal.2011. 01.023 [Google Scholar] [Crossref] 
  14. Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of copper (II) onto different adsorbents. Journal of Dispersion Science and Technology, 31(7), 918–930. https://doi.org/10.1080/01932690903224003 [Google Scholar] [Crossref] 
  15. Smiciklas, I., Dimovic, S., Plecas, I. & Mitric, M. (2006). Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research, 40(12), 2267–2274. https://doi.org/10.1016/j.watres.2006.04. 031 [Google Scholar] [Crossref] 
  16. Tan, E., Kizilkaya, B., Ucyol, N., Ormanci, H. B., & Oral, A. (2014). Surface modification with P-aminohippuric acid on biogenic apatite (fish bones) particles. Marine Science and Technology Bulletin, 3(2), 45-50. [Google Scholar]
  17. Zhu, R., Yu, R., Yao, J., Mao, D., Xing, C. & Wanga, D. (2008). Removal of Cd2+ from aqueous solutions by hydroxyapatite. Catalysis Today, 139(1-2), 94–99. https://doi.org/10.1016/ j.cattod.2008. 08.011 [Google Scholar] [Crossref]