Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2021, Vol. 2(1) 76-85

Effect of Regional Differences on Fatty Acid Profiles of Ulva linza (Linnaeus 1753), Enteromorpha flexuosa (Agardh, 1883) and Taonia atomaria (Agardh, 1848)

Mısra Bakan, Büşra Peksezer, Nahit Soner Börekçi, Mehmet Tahir Alp & Deniz Ayas

pp. 76 - 85   |  DOI: https://doi.org/10.29329/actanatsci.2021.314.12   |  Manu. Number: MANU-2012-22-0002.R3

Published online: June 19, 2021  |   Number of Views: 123  |  Number of Download: 693


Abstract

Total fat and fatty acid levels of Ulva linza (Linnaeus 1753), Enteromorpha flexuosa (Agardh, 1883), and Taonia atomaria (Agardh, 1848) collected from Viranşehir, Taşkıran, and Karaduvar coasts were determined. The total oil level of the samples was found to be 1.31-1.91%, 1.23%, 7.78% for U. linza, E. flexuosa and T. atomaria, respectively. The dominant saturated fatty acids are palmitic acid and stearic acid. The highest level of palmitic acid (32.27%) was found in E. flexuosa in Viranşehir beach. The highest level of stearic acid was found on the coast of Viranşehir (7.20%), U. linza. The highest level of ΣSFA was found in the U. linza species on Taşkıran coast (37.89%), and the lowest level was determined in the T. atomaria species on the Taşkıran coast (18.13%). It is oleic acid that has a high level of monounsaturated fatty acids. The highest level of this fatty acid (10.35%) was found in E. flexuosa species in Viranşehir beach. The highest level of ΣMUFA was found in the Viranşehir coast (16.67%) and the lowest level (11.39%) in the U. linza on the Viranşehir beach. The highest level of linolelaidic acid in polyunsaturated fatty acids was found in E. flexuosa in Viranşehir beach (3.34%). The highest level of linoleic acid (4.85%) was found in U. linza on the coast of Viranşehir. The highest level of ΣPUFA was found in T. atomaria on the Taşkıran coast (16.56%), and the lowest level (7.03%) was found in U. linza.

Keywords: U. linza, E. flexuosa, T. atomaria, Lipids, Fatty acids


How to Cite this Article?

APA 6th edition
Bakan, M., Peksezer, B., Borekci, N.S., Alp, M.T. & Ayas, D. (2021). Effect of Regional Differences on Fatty Acid Profiles of Ulva linza (Linnaeus 1753), Enteromorpha flexuosa (Agardh, 1883) and Taonia atomaria (Agardh, 1848) . Acta Natura et Scientia, 2(1), 76-85. doi: 10.29329/actanatsci.2021.314.12

Harvard
Bakan, M., Peksezer, B., Borekci, N., Alp, M. and Ayas, D. (2021). Effect of Regional Differences on Fatty Acid Profiles of Ulva linza (Linnaeus 1753), Enteromorpha flexuosa (Agardh, 1883) and Taonia atomaria (Agardh, 1848) . Acta Natura et Scientia, 2(1), pp. 76-85.

Chicago 16th edition
Bakan, Misra, Busra Peksezer, Nahit Soner Borekci, Mehmet Tahir Alp and Deniz Ayas (2021). "Effect of Regional Differences on Fatty Acid Profiles of Ulva linza (Linnaeus 1753), Enteromorpha flexuosa (Agardh, 1883) and Taonia atomaria (Agardh, 1848) ". Acta Natura et Scientia 2 (1):76-85. doi:10.29329/actanatsci.2021.314.12.

References
  1. Aguilera-Morales, M., Casas-Valdez, M., Carrillo-Domínguez, S., & González-Acosta, B., & Pérez-Gil, F. (2005). Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. Journal of Food Composition and Analysis, 18(1), 79-88. https://doi.org/10.1016/j.jfca.2003.12.012 [Google Scholar] [Crossref] 
  2. Aktar, S., & Cebe G. E. (2010). General spesifications, using areas of algae and their importance on pharmacy. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 39(3), 237-264. https://doi.org/10.1501/Eczfak_0000000568 [Google Scholar] [Crossref] 
  3. Alçay, A. Ü., Bostan, K., Dinçel, E., & Varlık, C. (2017). Alglerin insan gıdası olarak kullanımı [Algae as a food source for humans]. Aydın Gastronomy, 1(1), 47-59. [Google Scholar]
  4. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099 [Google Scholar] [Crossref] 
  5. Caf, F., Yılmaz, Ö., Durucan F., & Özdemir, N. Ş. (2015). Biochemical components of three marine macroalgae (Padina pavonica, Ulva lactuca and Taonia atomaria) from the Levantine Sea coast of Antalya, Turkey. Journal of Biodiversity and Environmental Sciences, 6(4), 401-411. [Google Scholar]
  6. Carvalho, J., Ribeiro, A., Castro, J. D. F. de, Vilarinho, C., & Castro, F. (2011). Biodiesel production by microalgae and macroalgae from north littoral Portuguese coast. Proceedings of the 1st International Conference on Wastes: Solutions, Treatments and Opportunities, Portugal. https://core.ac.uk/download/pdf/55615137.pdf [Google Scholar]
  7. Colombo, M. L., Rise, P., & Giavarini, F. (2006). Marine microalgae as sources of polyunsaturated fatty acids. Plant Foods for Human Nutrition, 61, 64-69. https://doi.org/10.1007/s11130-006-0015-7 [Google Scholar] [Crossref] 
  8. Cowing, B. E., & Saker, K. E. (2001). Polyunsaturated fatty acids and epidermal growth factor receptor/mitogen-activated protein kinase signaling in mammary cancer. The Journal of Nutrition, 131(4), 1125–1128. https://doi.org/10.1093/jn/131.4.1125 [Google Scholar] [Crossref] 
  9. El-Sheekh, M. M., Osman, M. E. H., Dyab, M. A., Amer, M. S. (2006). Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environmental Toxicology and Pharmacology, 21(1), 42-50. https://doi.org/10.1016/j.etap.2005.06.006 [Google Scholar] [Crossref] 
  10. EL-Wakf, A. M., Ebraheem, H. A., Serag, H. A., Hassan, H. A., & Gumaih, H. S. (2010). Association between inflammation and the risk of cardiovascular disorders in atherogenic male rats: Role of virgin and refined olive oil. Journal of American Science, 6(12), 807-817. [Google Scholar]
  11. Ganesan, K., Suresh Kumar, K., & Subba Rao, P. V. (2011). Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innovative Food Science & Emerging Technologies, 12(1), 73-78. https://doi.org/10.1016/j.ifset.2010.11.005 [Google Scholar] [Crossref] 
  12. Ganesan, K., Suresh Kumar, K., Subba Rao, P. V., Tsukui, Y., Bhaskar, N., Hosokawa, M., & Miyashita, K. (2014). Studies on chemical composition of three species of Enteromorpha. Biomedicine & Preventive Nutrition, 4(3), 365–369. https://doi.org/10.1016/j.bionut.2014.04.001 [Google Scholar] [Crossref] 
  13. Gümüş, G. (2006). Deniz marulunun kimyasal kompozisyonunun araştırılması. [Yüksek Lisans Tezi. Ege Üniversitesi]. [Google Scholar]
  14. Guner, H., & Aysel, V. (1989). Tohumsuz bitkiler I. cilt: Algler. Ege Üniversitesi Basımevi. [Google Scholar]
  15. Guschina, I. A., & Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160-186. https://doi.org/10.1016/j.plipres.2006.01.001 [Google Scholar] [Crossref] 
  16. Harwood, J. L., & Guschina, I. A. (2009). The versatility of algae and their lipid metabolism. Biochimie, 91(6), 679-684. https://doi.org/10.1016/j.biochi.2008.11.004 [Google Scholar] [Crossref] 
  17. HMSO. (1994). Nutritional aspects of cardiovascular disease. Report on health and social subjects no. 46. London, UK. [Google Scholar]
  18. Holdt, S. L., & Kraan S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23, 543-597. https://doi.org/10.1007/s10811-010-9632-5 [Google Scholar] [Crossref] 
  19. Ichibara, K., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31(5), 535-539. https://doi.org/10.1007/bf02522648 [Google Scholar] [Crossref] 
  20. Kandasamy, G., Karuppiah, S. K., & Subba Rao, P. V. (2012). Salt- and pH-induced functional changes in protein concentrate of edible green seaweed Enteromorpha species. Fisheries Science, 78, 169-176. https://doi.org/10.1007/s12562-011-0423-y [Google Scholar] [Crossref] 
  21. Lewis, M. A., & Wang, W. (1997). Water quality and aquatic plants. In W. Wang, W. R. Lower, J. W. Gorsuch, & J. S. Hughes (Eds.), Plants for environmental studies (pp. 141-175). CRC Lewis Publishers. [Google Scholar]
  22. Mchugh, D. J. (2003). A guide to the seaweed industry. FAO Fisheries Technical Paper, No. 441. Rome. 105p. [Google Scholar]
  23. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96. https://doi.org/10.1263/jbb.101.87 [Google Scholar] [Crossref] 
  24. Tabudravu, J. N., Gangaiya, P., Sotheeswaran, S., & South, G. R. (2002). Enteromorpha flexuosa (Wulfen) J. Agardh (Chlorophyta: Ulvales)--evaluation as an indicator of heavy metal contamination in a tropical estuary. Environmental Monitoring and Assessment, 75(2),201-213. https://doi.org/10.1023/A:1014439931466 [Google Scholar] [Crossref] 
  25. Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338, 985-992. https://doi.org/10.1016/0140-6736(91)91846-m [Google Scholar] [Crossref] 
  26. Wahbeh, M. I. (1997). Amino acid and fatty acid profiles of four species of macroalgae from Aqaba and their suitability for use in fish diets. Aquaculture, 159(1–2), 101-109. https://doi.org/10.1016/S0044-8486(97)00183-X [Google Scholar] [Crossref] 
  27. Weihrauch, J. L., Posati, L. P., Anderson, B. A., & Exler, J. (1975). Lipid conversion factors for calculating fatty acid contents of foods. Journal of the American Oil Chemists’ Society, 54(1), 36-40. https://doi.org/10.1007/BF02671370 [Google Scholar] [Crossref] 
  28. Zeybek, N., Zeybek, U., & Saygıner, B. (2003). Farmasötik botanik. Meta Basımevi. [Google Scholar]