- Al-Asheh, S., Banat, F., & Mobai, F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere, 39(12), 2087-2096. https://doi.org/10.1016/S0045-6535(99)00098-3 [Google Scholar] [Crossref]
- Baccar, R., Bouzid, J., Feki, M., & Montiel, A. (2009). Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. Journal of Hazardous Materials. 162(2-3), 1522–1529. https://doi.org/10.1016/j.jhazmat.2008.06.041 [Google Scholar] [Crossref]
- Banat, F., Asheh, S. A., & Mohai, F. (2000). Batch zinc removal from aqueous solution using dried animal bones. Separation and Purification Technology, 21(1-2), 155-164. https://doi.org/10.1016/S1383-5866(00)00199-4 [Google Scholar] [Crossref]
- Chojnacka, K. (2005). Equilibrium and kinetic modelling of chromium (III) sorption by animal bones. Chemosphere, 59(3), 315-320. https://doi.org/10.1016/j.chemosphere.2004.10.052 [Google Scholar] [Crossref]
- Corami, A., D’Acapito, F., Mignardi, S., & Ferini, V. (2008). Removal of Cu from aqueous solutions by synthetic hydroxyapatite: EXAFS Investigation. Materials Science and Engineering: B, 149(2), 209-213. https://doi.org/10.1016/j.mseb.2007.11.006 [Google Scholar] [Crossref]
- Dimovic, S., Smiciklas, I., Plecas, I., Antonovic, D., & Mitric, M. (2009). Comparative study of differently treated animal bones for Co2+ removal. Journal of Hazardous Materials, 164(1), 279-287. https://doi.org/10.1016/j.jhazmat.2008.08.013 [Google Scholar] [Crossref]
- Donat, R., Akdogan, A., Erdem, E., & Cetisli, H. (2005). Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science, 286(1), 43-52. https://doi.org/10.1016/j.jcis.2005.01.045 [Google Scholar] [Crossref]
- El-Sayed, G. O. (2011). Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination, 272(1-3), 225-232. https://doi.org/10.1016/j.desal.2011.01.025 [Google Scholar] [Crossref]
- Janga, S. H., Jeonga, Y. G., Mina, B. G., Lyoob, W. S., & Leea, S. C. (2008). Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels. Journal of Hazardous Materials, 159(2-3), 294-299. https://doi.org/10.1016/j.jhazmat.2008.02.018 [Google Scholar] [Crossref]
- Kaushal, M., & Tiwari, A. (2010). Removal of rhodamine-B from aqueous solution by adsorption onto cross-linked alginate beads. Journal of Dispersion Science and Technology, 31(4), 438-441. https://doi.org/10.1080/01932690903210135 [Google Scholar] [Crossref]
- Kizilkaya, B., Ormanci, H. B., Oztekin, A., Tan, E., Ucyol, N., Turker, G., Tekinay, A. A., & Bilici, A. (2015). An application on fish bones by chemical modification of histidine as amino acid. Marine Science and Technology Bulletin, 4(1), 19-23. https://dergipark.org.tr/en/pub/masteb/issue/22356/239445 [Google Scholar]
- Kizilkaya, B., Tekinay, A. A., & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination, 264(1-2), 37-47. https://doi.org/10.1016/j.desal.2010.06.076 [Google Scholar] [Crossref]
- Li, Y., & Weng, W. (2008). Surface modification of hydroxyapatite by stearic acid: characterization and in vitro behaviors. Journal of Materials Science: Materials in Medicine, 19, 19-25. https://doi.org/10.1007/s10856-007-3123-5 [Google Scholar] [Crossref]
- Mahmoodi, N. M., Salehi, R., & Arami, M. (2011). Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination, 272(1-3), 187-195. https://doi.org/10.1016/j.desal.2011.01.023 [Google Scholar] [Crossref]
- Narasaraju, T. S. B., & Phebe, D. E. (1996). Some physico-chemical aspects of hydroxylapatite. Journal of Materials Science, 31, 1-21. https://doi.org/10.1007/BF00355120 [Google Scholar] [Crossref]
- Ozawa, M., Satake, K., & Suzuki, R. (2003). Removal of aqueous chromium by fishbone waste originated hydroxyapatite. Journal of Materials Science Letters, 22, 513-514. https://doi.org/10.1023/A:1022982218727 [Google Scholar] [Crossref]
- Qiu, X., Chen, L., Hu, J., Sun, J., Hong, Z., Liu, A., Chen, X., & Jing, X. (2005). Surface-modified hydroxyapatite linked by lactic acid oligomer in the absence of catalyst. Journal of Polymer Science: Part A: Polymer Chemistry, 43(21), 5177-5185. https://doi.org/10.1002/pola.21006 [Google Scholar] [Crossref]
- Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of copper (II) onto different adsorbents. Journal of Dispersion Science and Technology, 31(7), 918-930. https://doi.org/10.1080/01932690903224003 [Google Scholar] [Crossref]
- Sharma, Y. C., Upadhyay, U., & Upadhyay, S. N. (2011). An economically viable removal of methylene blue by adsorption on activated carbon prepared from rice husk. The Canadian Journal of Chemical Engineering, 89(2), 377-383. https://doi.org/10.1002/cjce.20393 [Google Scholar] [Crossref]
- Smiciklas, I., Dimovic, S., Plecas, I., & Mitric, M. (2006). Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research, 40(12), 2267-2274. https://doi.org/10.1016/j.watres.2006.04.031 [Google Scholar] [Crossref]
- Zhu, R., Yu, R., Yao, J., Mao, D., Xing, C., & Wanga, D. (2008). Removal of Cd2+ from aqueous solutions by hydroxyapatite. Catalysis Today, 139(1-2), 94-99. https://doi.org/10.1016/j.cattod.2008.08.011 [Google Scholar] [Crossref]
|