Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2021, Vol. 2(1) 58-67

The Effect of Using Wheat Protein at Different Ratios Instead of Fish Meal on Growth Parameters and Fatty Acid of Juvenile Sea Bass (Dicentrarchus labrax L. 1758)

Seçkin Akın & Musa Bulut

pp. 58 - 67   |  DOI:   |  Manu. Number: MANU-2104-28-0005.R1

Published online: June 16, 2021  |   Number of Views: 94  |  Number of Download: 697


In this study, a feeding experiment was conducted using different rations (25%, 50%, 75%, and 100%) of wheat flour protein instead of fishmeal in fry fish (Dicentrarchus labrax) feeds. In the experiment, an average weight of 2.33±0.2 g juvenile seabass was used. Seabass fries were fed with the experimental feeds for 60 days. The experiment was designed in triplicates. At the end of the experiment, the growth parameters and fatty acid composition of fish fries were examined. As a result, it was statistically determined that the use of wheat flour protein at a high rate had a negative effect on the growth parameters of the fish. Significant changes in fatty acid composition were also observed.

Keywords: Seabass wheat flour protein, Growth, Fatty acid

How to Cite this Article?

APA 6th edition
Akin, S. & Bulut, M. (2021). The Effect of Using Wheat Protein at Different Ratios Instead of Fish Meal on Growth Parameters and Fatty Acid of Juvenile Sea Bass (Dicentrarchus labrax L. 1758) . Acta Natura et Scientia, 2(1), 58-67. doi: 10.29329/actanatsci.2021.314.10

Akin, S. and Bulut, M. (2021). The Effect of Using Wheat Protein at Different Ratios Instead of Fish Meal on Growth Parameters and Fatty Acid of Juvenile Sea Bass (Dicentrarchus labrax L. 1758) . Acta Natura et Scientia, 2(1), pp. 58-67.

Chicago 16th edition
Akin, Seckin and Musa Bulut (2021). "The Effect of Using Wheat Protein at Different Ratios Instead of Fish Meal on Growth Parameters and Fatty Acid of Juvenile Sea Bass (Dicentrarchus labrax L. 1758) ". Acta Natura et Scientia 2 (1):58-67. doi:10.29329/actanatsci.2021.314.10.

  1. Acar, Ü., Türker, A., Bulut, M., Yıldırım, Ö., Yılmaz, S., & Kesbiç, O. S. (2013). The effect of dietary soybean meal on growth, nutrient utilization, body composition and some serum biochemistry variables of two banded seabream, Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817). Iranian Journal of Fisheries Sciences, 12(4), 749-758. [Google Scholar]
  2. Akbulut, B., Aksungur, M., Aksungur, N., Şahin, T., & Erteken, A. (1999). Karadeniz’de levrek balığı yetiştiriciliği. Proje Sonuç Raporu (1994-1999). Su Ürünleri Merkez Araştırma Enstitüsü, Trabzon, Türkiye. [Google Scholar]
  3. AOAC. (1998). Official Methods of Analysis of AOAC International, Gaithersburg MD. [Google Scholar]
  4. AOAC. (2000). Official Methods of Analysis. (17th Ed.) Vol II. Association of Official Analytical Chemists International. [Google Scholar]
  5. Bell, J. G., Tocher, D. R., MacDonald, F. M., & Sargent, J. R. (1994). Effects of diets rich in linoleic (18:2n-6) and alpha-linolenic (18:3n-3) acids on the growth, lipid class and fatty acid compositions and eicosanoid production in juvenile turbot (Scophthalmus maximus L.). Fish Physiology Biochemistry, 13, 105-118. [Google Scholar] [Crossref] 
  6. Deng, D. F., Ju, Z. Y., Dominy, W. G., Conquest, L., Smiley, S., & Bechtel, P. J. (2014). Effect of replacing dietary menhaden oil with pollock or soybean oil on muscle fatty acid composition and growth performance of juvenile Pacific threadfin (Polydactylus sexfilis). Aquaculture, 422-423, 91-97. [Google Scholar] [Crossref] 
  7. El-Saidy, D. M. S. D., & Gaber, M. M. A. (2002). Complete replacement of fish meal by soybean meal with dietary L-lysine supplementation for Nile tilapia, Oreochromis niloticus (L.) fingerling. Journal of the World Aquaculture Society, 33(3), 297-306. [Google Scholar] [Crossref] 
  8. Güroy, D., Şahin, İ., Güroy, B., Merrifield, D. L., Bulut, M., & Tekinay, A. A. (2013). Replacement of fishmeal with rice protein concentrate in practical diets for European sea bass Dicentrarchus labrax reared at winter temperatures. Aquaculture Research, 44, 462–471. [Google Scholar] [Crossref] 
  9. Hardy, R. W. (2006). Fishmeal prices drive changes in fish feed formulations. Aquaculture Magazine, 32(4), 28-31. [Google Scholar]
  10. IUPAC. (1987). Standard Methods for the Analysis of Oils, Fats and Derivatives. 1st Supplement to the 7th Edition Oxford Blackwell Scientific Publications. [Google Scholar]
  11. Izquierdo, M. S., Montero, D., Robaina, L., Caballero, M. J., Rosenlund, G., & Ginés, R. (2005). Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture, 250(1-2), 431-444. [Google Scholar] [Crossref] 
  12. Karapanagiotidis, I. T, Bell, M. V., Little, D. C., & Yakupitiyage, A. (2007). Replacement of dietary fish oils by alpha-linolenic acid-rich oils lowers omega 3 content in tilapia flesh. Lipids, 42(6), 547-559. [Google Scholar] [Crossref] 
  13. Kızılaslan, H. (2004). Dünya’da ve Türkiye’de buğday üretimi ve uygulanan politikaların karşılaştırılması. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 21(2), 23-38. [Google Scholar]
  14. Koch, J. F., Rawles, S. D., Webster, C. D., Cummins, V., Kobayashi, Y., Thompson, K. R., Gannam, A. L., Twibel, R. G., & Hyde, N. M. (2016). Optimizing fish meal-free commercial diets for Nile tilapia, Oreochromis niloticus. Aquaculture, 452, 357-366. [Google Scholar] [Crossref] 
  15. Li, F. J., Lin, X., Lin, S. M., Chen, W. Y., & Guan, Y. (2016). Effects of dietary fish oil substitution with linseed oil on growth, muscle fatty acid and metabolism of tilapia (Oreochromis niloticus). Aquaculture Nutrition, 22(3), 499-508. [Google Scholar] [Crossref] 
  16. Martínez-Llorens, S., Moñino, A. V., Tomás Vidal, A., Salvador, V. J. M., Pla, M., & Jover Cerdá, M. (2007). Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquaculture Research, 38(1), 82-90. [Google Scholar] [Crossref] 
  17. Montero, D., Robaina, L., Caballero, M. J., Ginés, R., & Izquierdo, M. S. (2005). Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: A time-course study on the effect of a re-feeding period with a 100% fish oil diet. Aquaculture, 248(1-4), 121-134. [Google Scholar] [Crossref] 
  18. Montero, D., Socorro, J., Tort, L., Caballero, M. J., Robaina, L. E., Vergara, J. M., & Izquierdo, M. S. (2004). Glomerulonephritis and immunosuppression associated with dietary essential fatty acid deficiency in gilthead sea bream, Sparus aurata L., juveniles. Journal of Fish Diseases, 27(5), 297-306. [Google Scholar] [Crossref] 
  19. Morris, T. C., Samocha, T. M., Davis, D. A., & Fox, J. M. (2011). Cholesterol supplements for Litopenaeus vannamei reared on plant based diets in the presence of natural productivity. Aquaculture, 314(1-4), 140-144. [Google Scholar] [Crossref] 
  20. Mourente, G., & Bell, J. G. (2006). Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 145(3-4), 389-399. [Google Scholar] [Crossref] 
  21. Ng, W. K., & Wang, Y. (2011). Inclusion of crude palm oil in the broodstock diets of female Nile tilapia, Oreochromis niloticus, resulted in enhanced reproductive performance compared to broodfish fed diets with added fish oil or linseed oil. Aquaculture, 314(1), 122-131. [Google Scholar] [Crossref] 
  22. Özcan, H., Bayramoğlu, H. O., & Aydın, A. (2021). Buğday tarımı. Retrieved on April 24, 2021, from [Google Scholar]
  23. Tacon, A. G. J., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158. [Google Scholar] [Crossref] 
  24. Trushenski, J., Schwarz, M., Lewis, H., Laporte, J., Delbos, B., Takeuchi, R., & Sampaio, L. A. (2011). Effect of replacing dietary fish oil with soybean oil on production performance and fillet lipid and fatty acid composition of juvenile cobia Rachycentron canadum. Aquaculture Nutrition, 17(2), 437-447. [Google Scholar] [Crossref] 
  25. Webster, C. D., Rawles, S. D., Koch, J. F., Thompson, K. R., Kobayashi, Y., Gannam, A. L., Twibel, R. G., & Hyde, N. M. (2016). Bio-Ag reutilization of distiller's dried grains with solubles (DDGS) as a substrate for black soldier fly larvae, Hermetia illucens, along with poultry by-product meal and soybean meal, as total replacement of fish meal in diets for Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition, 22(5), 976-988. [Google Scholar] [Crossref] 
  26. Yıldız, M., & Şener, E. (2004). Karadeniz Bölgesi’ndeki gökkuşağı alabalığı (Oncorhynchus mykiss) ve deniz levreği (Dicentrarchus labrax) yetiştiriciliği yapan işletmelerin yapısal analizi ve biyo-teknolojik özellikleri [Structural and biotechnological properties of rainbow trout (Oncorhynchus mykiss) and seabass (Dicentrarchus labrax) farms in the Black Sea region]. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 29(2), 241-252. [Google Scholar]
  27. Yılmaz, S., & Ergün, S. (2013). Chickweed (Stellaria media) leaf meal as a feed ingredient for tilapia (Oreochromis mossambicus). Journal of Applied Aquaculture, 25(4), 329-336. [Google Scholar] [Crossref]