Acta Nat. Sci.   |  e-ISSN: 2718-0638

Review article | Acta Natura et Scientia 2021, Vol. 2(2) 141-147

A Review of Reported Bacterial Diseases and Antibiotic Use in Tilapia Culture in the Philippines

Albaris Tahiluddin & Ertuğrul Terzi

pp. 141 - 147   |  DOI:   |  Manu. Number: MANU-2107-19-0001.R2

Published online: November 20, 2021  |   Number of Views: 413  |  Number of Download: 837


Aquaculture has become important to meet the demand for animal food both in local and international markets due to the increasing world population. Tilapias are one of the significant cultured species worldwide, in which the Philippines is one of the leading tilapia-producing countries. Tilapias are the second most preferred fish in the Philippines, constituting about 12% of its total aquaculture production in 2018. Cultivation of tilapias is a practice nationwide, mostly performed in fish ponds and cages in various environments. Despite being an almost hardy fish, the investigation of tilapias for bacterial infections also allowed us to follow the changing bacterial world. In this study, we have reviewed articles that previously reported bacterial diseases and the use of antibiotics in tilapia culture in the Philippines. Streptococcosis, Motile Aeromonas Septicemia, and Pseudomonas infection caused by Streptococcus agalactiae and S. iniae, Aeromonas hydrophila, and Pseudomonas fluorescens and P. aeruginosa, respectively, were the identified fish diseases. Chloramphenicol, ampicillin, tetracycline, and erythromycin were among the most commonly used antibiotics in tilapia culture.

Keywords: Tilapia, Bacterial disease, Antibiotics, Philippines

How to Cite this Article?

APA 6th edition
Tahiluddin, A. & Terzi, E. (2021). A Review of Reported Bacterial Diseases and Antibiotic Use in Tilapia Culture in the Philippines . Acta Natura et Scientia, 2(2), 141-147. doi: 10.29329/actanatsci.2021.350.08

Tahiluddin, A. and Terzi, E. (2021). A Review of Reported Bacterial Diseases and Antibiotic Use in Tilapia Culture in the Philippines . Acta Natura et Scientia, 2(2), pp. 141-147.

Chicago 16th edition
Tahiluddin, Albaris and Ertugrul Terzi (2021). "A Review of Reported Bacterial Diseases and Antibiotic Use in Tilapia Culture in the Philippines ". Acta Natura et Scientia 2 (2):141-147. doi:10.29329/actanatsci.2021.350.08.

  1. Amal, M. N. A., & Zamri-Saad, M. (2011). Streptococcosis in tilapia (Oreochromis niloticus): A review. Pertanika Journal of Tropical Agricultural Science, 34(2), 195-206. [Google Scholar]
  2. Anshary, H., Kurniawan, R., Sriwulan, S., Ramil, R., & Baxa, D. V. (2014). Isolation and molecular identification of the etiological agents of streptococcosis in Nile tilapia (Oreochromis niloticus) cultured in net cages in Lake Sentani, Papua, Indonesia. SpringerPlus, 3, 627. [Google Scholar] [Crossref] 
  3. Baleta, F. N., Bolaños, J. M., & Medrano, W. C. (2019). Assessment of tilapia cage farming practices in relation to the occurrence of fish mortalities along the fish cage belt at Magat reservoir, Philippines. Journal of Fisheries and Environment, 43(2), 1-13. [Google Scholar]
  4. Barkham, T., Zadoks, R. N., Azmai, M. N. A., Baker, S., Bich, V. T. N., Chalker, V., Chau, M. L., Dance, D., Deepak, R. N., van Doorn, H. R., Gutierrez, R. A., Holmes, M. A., Huong, L. N. P., Koh, T. H., Martins, E., Mehershahi, K., Newton, P., Ng, L. C., Phuoc, N. N., Sangwichian, O., Sawatwong, P., Surin, U., Tan, T. Y., Tang, W. Y., Thuy, N. V., Turner, P., Vongsouvath, M., Zhang, D., Whistler, T., & Chen, S. L. (2019). One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLoS Neglected Tropical Diseases, 13(6), e0007421. [Google Scholar] [Crossref] 
  5. BFAR. (2021). Red Tide. Retrieved on August 20, 2021, from: [Google Scholar]
  6. Boran, H., Terzi, E., Altinok, I., Capkin, E., & Bascinar, N. (2013). Bacterial diseases of cultured Mediterranean horse mackerel (Trachurus mediterraneus) in sea cages. Aquaculture, 396-399, 8-13. [Google Scholar] [Crossref] 
  7. Boyd, C. E. (2004). Farm-level issues in aquaculture certification: Tilapia. Report commissioned by WWF-US. 29p. Retrieved on March 30, 2021, from [Google Scholar]
  8. Boyd, C. E., D’Abramo, L. R., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., & Valenti, W. C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633. [Google Scholar] [Crossref] 
  9. Capkin, E., Terzi, E., & Altinok, I. (2015). Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Diseases of Aquatic organisms, 114(2), 127-137. [Google Scholar] [Crossref] 
  10. Corum, O., Terzi, E., Corum, D. D., Kenanoglu, O. N., Bilen, S., & Uney, K. (2020). Pharmacokinetic/pharmacodynamic integration of marbofloxacin after oral and intravenous administration in rainbow trout (Oncorhynchus mykiss). Aquaculture, 514, 734510. [Google Scholar] [Crossref] 
  11. Cruz-Lacierda, E.R., De la Peña, L.D., & Lumanlan-Mayo, S.C. (2000). The use of chemicals in aquaculture in the Philippines. In J. R. Arthur, C. R. Lavilla-Pitogo, & R. P. Subasinghe (Eds.), Use of Chemicals in Aquaculture in Asia: Proceedings of the Meeting on the Use of Chemicals in Aquaculture in Asia, 20-22 May 1996, Tigbauan, Iloilo, Philippines (pp. 155-184). Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center. [Google Scholar]
  12. Duremdez, R. C., & Lio-Po, G. D. (1988). Isolation and identification of Pseudomonas fluorescens from hatchery-reared tilapia fry (Oreochromis niloticus Linnaeus). SEAFDEC Asian Aquaculture, 10(2), 9. [Google Scholar]
  13. El-Sayed, A. F. M. (2019). Tilapia culture. Academic Press. [Google Scholar]
  14. Guerrero III, R. D. (2019). Farmed tilapia production in the Philippines is declining: What has happened and what can be done. Philippine Journal of Science, 148(2), 11-15. [Google Scholar]
  15. Jantrakajorn, S., Maisak, H., & Wongtavatchai, J. (2014). Comprehensive investigation of Streptococcosis outbreak in cultured Nile tilapia, Oreochromis niloticus, and Red Tilapia, Oreochromis sp., of Thailand. Journal of the World Aquaculture Society, 45(4), 392–402. [Google Scholar] [Crossref] 
  16. Karki, H., Mustafa, A., Master, A., & Dhawale, S. (2013). Antibiotic resistant bacteria in the gut of hatchery-reared Tilapia and Coho Salmon. Universal Journal of Microbiology Research, 1, 43-46. [Google Scholar] [Crossref] 
  17. Kayansamruaj, P., Areechon, N., & Unajak, S. (2020). Development of fish vaccine in Southeast Asia: A challenge for the sustainability of SE Asia aquaculture. Fish & Shellfish Immunology, 103, 73-87. [Google Scholar] [Crossref] 
  18. Kayansamruaj, P., Soontara, C., Unajak, S., Dong, H. T., Rodkhum, C., Kondo, H., & Areechon, N. (2019). Comparative genomics inferred two distinct populations of piscine pathogenic Streptococcus agalactiae, Serotype Ia ST7 and Serotype III ST 283, in Thailand and Vietnam. Genomics, 111, 1657–1667. [Google Scholar] [Crossref] 
  19. Langaoen, A. F., Manzano, V. J. V., Requilman, E. M. R., Tabardillo, J. M., Maningas, M. B. B., & Calugay, R. J. (2018). Antibiotic-resistant bioluminescent Vibrios from Philippine aquacultured Chanos chanos and Oreochromis niloticus. Aquaculture, Aquarium, Conservation & Legislation (AACL) Bioflux, 11(2), 505-515. [Google Scholar]
  20. Legario, F. S., Choresca Jr, C. H., Turnbull, J. F., & Crumlish, M. (2020). Isolation and molecular characterization of streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus) in the Philippines. Journal of Fish Diseases, 43(11), 1431-1442. [Google Scholar] [Crossref] 
  21. Li, Y., Liu, L., Huang, P. R., Fang, W., Luo, Z. P., Peng, H. L., & Li, A. X. (2014). Chronic streptococcosis in Nile tilapia, Oreochromis niloticus (L.), caused by Streptococcus agalactiae. Journal of Fish Diseases, 37(8), 757–763. [Google Scholar] [Crossref] 
  22. Limbauan, J. (2018). Pathogenicity and antimicrobial susceptibility of bacteria isolated from kidney, liver, and brain of Nile tilapia (Oreochromis niloticus) stocked in intensive cage farming systems in Taal Lake, Batangas. [M.S. Thesis. De La Salle University]. [Google Scholar]
  23. Liu, G., Zhu, J., Chen, K., Gao, T., Yao, H., Liu, Y., & Lu, C. (2016). Development of Streptococcus agalactiae vaccines for tilapia. Diseases of Aquatic Organisms, 21(122), 163–170. [Google Scholar] [Crossref] 
  24. Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. [Google Scholar] [Crossref] 
  25. Miao, W., & Wang, W. (2020). Trends of aquaculture production and trade: Carp, tilapia, and shrimp. Asian Fisheries Science, 33(1), 1-10. [Google Scholar] [Crossref] 
  26. Niu, G., Wongsathein, D., Boonyayatra, S., & Khattiya, R. (2019). Occurrence of multiple antibiotic resistance and genotypic characterization in Edwardsiella tarda isolated from cage‐cultured hybrid red tilapia (Oreochromis sp.) in the Ping River, Northern Thailand. Aquaculture Research, 50(12), 3643-3652. [Google Scholar] [Crossref] 
  27. Öztürk, R. Ç., & Altınok, İ. (2014). Bacterial and viral fish diseases in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 14(1), 275-297. [Google Scholar] [Crossref] 
  28. Pakingking, R., Palma, P., & Usero, R. (2015). Quantitative and qualitative analyses of the bacterial microbiota of tilapia (Oreochromis niloticus) cultured in earthen ponds in the Philippines. World Journal of Microbiology and Biotechnology, 31(2), 265-275. [Google Scholar] [Crossref] 
  29. Pakingking, R., Palma, P., & Usero, R. (2020). Aeromonas load and species composition in tilapia (Oreochromis niloticus) cultured in earthen ponds in the Philippines. Aquaculture Research, 51(11), 4736-4747. [Google Scholar] [Crossref] 
  30. Perera, R. P., Johnson, S. K., Collins, M. D., & Lewis, D. H. (1994). Streptococcus iniae associated with mortality of Tilapia nilotica × T. aurea hybrids. Journal of Aquatic Animal Health, 6(4), 335-340.<0335:SIAWMO>2.3.CO;2 [Google Scholar] [Crossref] 
  31. Primavera, J. H. (1993). A critical review of shrimp pond culture in the Philippines. Reviews in Fisheries Science, 1(2), 51-201. [Google Scholar] [Crossref] 
  32. PSA. (2019). Fisheries statistics of the Philippines 2016-2018. PSA CVEA Building, East Avenue, Diliman Quezon City, Philippines. [Google Scholar]
  33. Reyes, A. T. (2018). Outbreak investigation of Aeromonas hydrophila in tilapia grow-out farms in Minalin, Pampanga, Philippines. International Journal of Biology, Pharmacy and Allied Sciences, 7(8), 1464-1473. [Google Scholar] [Crossref] 
  34. Reyes, A. T. (2019). Outbreak investigation of Pseudomonas aeruginosa in tilapia grow-out farms in Minalin, Pampanga, Philippines. International Journal of Fisheries and Aquatic Studies, 7(4), 428-434 [Google Scholar]
  35. Reyes, A. T., Fajardo, L. J., & Abando, A. K. Y. (2019). Antibiotic susceptibility of Streptococcus agalactiae isolated from Tilapia pond sediment in Lubao, Pampanga, Philippines. Journal of Drug Delivery and Therapeutics, 9(2-s), 370-375. [Google Scholar] [Crossref] 
  36. Rico, A., Oliveira, R., McDonough, S., Matser, A., Khatikarn, J., Satapornvanit, K., Nogueira, A. J. A., Soares, A. M. V. M., Domingues, I., & Van den Brink, P. J. (2014). Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environmental Pollution, 191, 8–16. [Google Scholar] [Crossref] 
  37. Rodger, H. D. (2016). Fish disease causing economic impact in global aquaculture. In A. Adams (Ed.), Fish vaccines (pp. 1-34). Springer. [Google Scholar]
  38. Romana-Eguia, M. R. R., Eguia, R. V., & Pakingking Jr., R. V. (2020). Tilapia culture: The basics. Tigbauan, Iloilo, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center. [Google Scholar]
  39. Sajorne, R. E., & Mabuhay-Omar, J. A. (2020). Antimicrobial property of the epidermal mucus of Tilapia Oreochromis spp. The Palawan Scientists, 12, 43-60. [Google Scholar]
  40. Stratev, D., & Odeyemi, O. A. (2017). An overview of motile Aeromonas septicaemia management. Aquaculture International, 25, 1095–1105. [Google Scholar] [Crossref] 
  41. Su, Y., Liu, C., Deng, Y., Cheng, C., Ma, H., Guo, Z., & Feng, J. (2019). Molecular typing of Streptococcus agalactiae isolates of serotype Ia from tilapia in southern China. FEMS Microbiology Letters, 366(13), fnz154. [Google Scholar] [Crossref] 
  42. Syuhada, R., Zamri-Saad, M., Ina-Salwanay, M. Y., Mustafa, M., Nasruddin, N. N., Desa, M. N. M., & Amal, M. N. A. (2020). Molecular characterization and pathogenicity of Streptococcus agalactiae serotypes Ia ST7 and III ST283 isolated from cultured red hybrid tilapia in Malaysia. Aquaculture, 515, 7354543. ulture.2019.734543 [Google Scholar] [Crossref] 
  43. Tahiluddin, A. B., & Terzi, E. (2021). Ice-ice disease in commercially cultivated seaweeds Kappaphycus spp. and Eucheuma spp.: A review on the causes, occurrence, and control measures. Marine Science and Technology Bulletin, 10(3), 234-243. [Google Scholar] [Crossref] 
  44. Terzi, E. (2018). Determination of antimicrobial resistance profiles of the bacteria isolated from cultured sturgeons. Menba Journal of Fisheries Faculty, 4(2), 7-13. [Google Scholar]
  45. Terzi, E., Corum, O., Bilen, S., Kenanoglu, O. N., Atik, O., & Uney, K. (2020). Pharmacokinetics of danofloxacin in rainbow trout after different routes of administration. Aquaculture, 520, 734984. [Google Scholar] [Crossref] 
  46. Terzi, E., Kucukkosker, B., Bilen, S., Kenanoglu, O. N., Corum, O., Özbek, M., & Parug, S. S. (2021). A novel herbal immunostimulant for rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish & Shellfish Immunology, 110, 55-66. [Google Scholar] [Crossref] 
  47. Yambot, A. V. (1998). Isolation of Aeromonas hydrophila from Oreochromis niloticus during fish disease outbreaks in the Philippines. Asian Fisheries Science, 10, 347-354. [Google Scholar]