- Bhagwat, V. R. (2019). Safety of water used in food production. In R. L. Singh & S. Mondal (Eds.), Food Safety and Human Health (pp. 219–247). Elsevier. https://doi.org/10.1016/B978-0-12-816333-7.00009-6 [Google Scholar] [Crossref]
- Drinking Water and Health. (1982). Drinking Water and Health Volume 4. Safe Drinking Water Committee. National Academies Press. https://doi.org/10.17226/325 [Google Scholar] [Crossref]
- Eissa, M. (2015). Shewhart control chart in microbiological quality control of purified water and its use in quantitative risk evaluation. Pharmaceutical and Biosciences Journal, 4(1), 45–51. https://doi.org/10.20510/ukjpb/4/i1/87845 [Google Scholar] [Crossref]
- Eissa, M. (2016). Study of microbial distribution from different processing stages in purified water production plant of pharmaceutical manufacturing facility. Research & Reviews: Journal of Microbiology and Virology, 6(1), 31-45. [Google Scholar]
- Eissa, M. (2018a). Microbiological quality of purified water assessment using two different trending approaches: A case study. Sumerianz Journal of Scientific Research, 1(3), 75-79. [Google Scholar]
- Eissa, M. (2018b). Variable and attribute control charts in trend analysis of active pharmaceutical components: Process efficiency monitoring and comparative study. Experimental Medicine, 1(2), 31-44. https://doi.org/10.31058/j.em.2018.11003 [Google Scholar] [Crossref]
- Eissa, M., Rashed, E., & Eissa, D. (2022). Principal component analysis in long term assessment of total viable plate count of municipal water distribution network system in healthcare facility. Environmental Research and Technology, 5(2), 165-171. https://doi.org/10.35208/ert.1062683 [Google Scholar] [Crossref]
- Elisson, A. (2017). Implementing SPC for non-normal processes with the I-MR chart: A case study [M.Sc. Thesis. Royal Institute of Technology (KTH)] [Google Scholar]
- Essam Eissa, M. (2018). Investigation of microbiological quality of water from the feed source to the terminal application in the healthcare facility: A case study. Health Research, 2(1), 16-23. https://doi.org/10.31058/j.hr.2018.21002 [Google Scholar] [Crossref]
- Hamed, M. S. (2017). Multivariate statistical process of Hotelling’s T2 control charts procedures with industrial application. Journal of Statistics: Advances in Theory and Applications, 18(1), 1-44. https://doi.org/10.18642/jsata_7100121868 [Google Scholar] [Crossref]
- Held, B. (2018). Microsoft excel functions and formulas (Fourth edition). Mercury Learning and Information. [Google Scholar]
- Hubbard, M. R. (2003). Statistical quality control for the food industry. Springer. https://doi.org/10.1007/978-1-4615-0149-7 [Google Scholar] [Crossref]
- Jones, G., & Govindaraju, K. (2001). A graphical method for checking attribute control chart assumptions. Quality Engineering, 13(1), 19-26. https://doi.org/10.1080/08982110108918620 [Google Scholar] [Crossref]
- Keller, P. A. (2011). Statistical process control demystified. McGraw-Hill. [Google Scholar]
- Khakifirooz, M., Tercero-Gómez, V. G., & Woodall, W. H. (2021). The role of the normal distribution in statistical process monitoring. Quality Engineering, 33(3), 497–510. https://doi.org/10.1080/08982112.2021.1909731 [Google Scholar] [Crossref]
- Laney, D. B. (2002). Improved control charts for attributes. Quality Engineering, 14(4), 531–537. https://doi.org/10.1081/QEN-120003555 [Google Scholar] [Crossref]
- Levine, D. M., Stephan, D., & Szabat, K. A. (2021). Statistics for managers using Microsoft Excel (Ninth edition, global edition). Pearson. [Google Scholar]
- Moon, J. (2020). An Investigation into the use of Laney U Chart as a visual schedule tracker to graphically monitor the schedule performance index. Journal of Engineering, Project, and Production Management, 10(1), 35-42. [Google Scholar]
- Mosadeghrad, A. M. (2014). Factors influencing healthcare service quality. International Journal of Health Policy and Management, 3(2), 77–89. https://doi.org/10.15171/ijhpm.2014.65 [Google Scholar] [Crossref]
- Motschman, T. L., & Moore, S. B. (1999). Corrective and preventive action. Transfusion Science, 21(2), 163-178. https://doi.org/10.1016/S0955-3886(99)00088-0 [Google Scholar] [Crossref]
- Newton, I. (Ed.). (2014). Minitab cookbook: Over 110 practical recipes to explore the vast array of statistics in Minitab 17. Packt Publishing. [Google Scholar]
- Sardella, M., Belcher, G., Lungu, C., Ignoni, T., Camisa, M., Stenver, D. I., Porcelli, P., D’Antuono, M., Castiglione, N. G., Adams, A., Furlan, G., Grisoni, I., Hall, S., Boga, L., Mancini, V., Ciuca, M., Chonzi, D., Edwards, B., Mangoni, A. A., … Le Louet, H. (2021). Monitoring the manufacturing and quality of medicines: A fundamental task of pharmacovigilance. Therapeutic Advances in Drug Safety, 12, 204209862110384. https://doi.org/10.1177/20420986211038436 [Google Scholar] [Crossref]
- Skinner, J. (2018). Statistics for immunologists. Current Protocols in Immunology, 122, e54. https://doi.org/10.1002/cpim.54 [Google Scholar] [Crossref]
- Smarter Solutions Inc. (2022). Transforming individuals control chart data and process capability reporting in one chart. Smarter Solutions, Inc. https://smartersolutions.com/resources/transforming-individuals-control-chart-data/ [Google Scholar]
- Triola, M. (2014). Minitab manual. Pearson Education. [Google Scholar]
- Wheeler, D. (2014, February 26). Myths about process behavior charts. Quality Digest. http://www.qualitydigest.com/inside/quality-insider-article/myths-about-process-behavior-charts-090711.html [Google Scholar]
|