Acta Nat. Sci.   |  e-ISSN: 2718-0638

Review article | Acta Natura et Scientia 2023, Vol. 4(1) 77-86

Escherichia coli: Germ Theory, A Bacterial Killer Mechanism, Virulence, Pathogenicity Islands (PAIs), Pathogenesis, Secretion Systems

Nurdan Filik & Fethi Filik

pp. 77 - 86   |  DOI: https://doi.org/10.29329/actanatsci.2023.353.08   |  Manu. Number: MANU-2301-19-0004.R1

Published online: June 22, 2023  |   Number of Views: 29  |  Number of Download: 390


Abstract

Why do bacteria damage their hosts? After bacteria bypass the immune system, bacterial virulence enables a host to replicate and propagate within a host in part by demolishing or escaping host defenses. Bacterial pathogens possess an array of specific killer mechanisms that submit virulence and the capacity to intercept host defence mechanisms. Mechanisms of virulence are often mediated by the subversion of normal aspects of host biology. Also, recently, three novels but wide themes have emerged in the field of bacterial virulence: a bacterial killing mechanism, secretion systems and pathogenicity islands. So, pathogen changes the host function so as to support the pathogen’s survival or multiplication. Such subversion is often mediated by the specific interaction of bacterial effector molecules with host-encoded proteins and other molecules. Escherichia coli is a considerable and diverse micro alive. E. coli needs only to acquire a mix of mobile genetic elements to become a pathogen capable of causing diseases. The worldwide burden of these diseases is staggering, with hundreds of millions alive affected annually. E. coli strains have been well a bacteria model, and each uses an arsenal of virulence and toxin to subvert host cellular functions to reenforce its virulence. This review focuses on the drastic and different pathogenic mechanisms that are used by various E. coli strains.

Keywords: Escherichia coli, A bacterial killer mechanism, Virulence, Pathogenicity islands, Pathogenesis, Secretion systems, Germ theory


How to Cite this Article?

APA 6th edition
Filik, N. & Filik, F. (2023). Escherichia coli: Germ Theory, A Bacterial Killer Mechanism, Virulence, Pathogenicity Islands (PAIs), Pathogenesis, Secretion Systems . Acta Natura et Scientia, 4(1), 77-86. doi: 10.29329/actanatsci.2023.353.08

Harvard
Filik, N. and Filik, F. (2023). Escherichia coli: Germ Theory, A Bacterial Killer Mechanism, Virulence, Pathogenicity Islands (PAIs), Pathogenesis, Secretion Systems . Acta Natura et Scientia, 4(1), pp. 77-86.

Chicago 16th edition
Filik, Nurdan and Fethi Filik (2023). "Escherichia coli: Germ Theory, A Bacterial Killer Mechanism, Virulence, Pathogenicity Islands (PAIs), Pathogenesis, Secretion Systems ". Acta Natura et Scientia 4 (1):77-86. doi:10.29329/actanatsci.2023.353.08.

References
  1. A Latin Dictionary. (2009). Founded on Andrews’ edition of Freund’s Latin dictionary. revised, enlarged, and in great part rewritten by. Charlton T. Lewis, Ph.D. and. Charles Short, L.L.D. Oxford. Clarendon Press. 1879. The National Endowment for the Humanities provided support for entering this text. [Google Scholar]
  2. Amanze, E. K., Ochomma, O. B., Udensi, C. G., Christian, C. P., Dike, C. S., Okakpu, J. C., & Nwokafor, C. V. (2022). The prevalence of extended spectrum beta-lactamase producing uropathogenic Escherichia coli from Mouau female hostel students. South Asian Journal of Research in Microbiology, 13(4), 24–34. https://doi.org/10.9734/sajrm/2022/v13i4255 [Google Scholar] [Crossref] 
  3. Basavaraju, M., & Gunashree, B. S. (2022). Escherichia coli: An overview of main characteristics. In Starčič Erjavec, M. (Ed.), Escherichia coli - Old and new insights. IntechOpen. https://doi.org/10.5772/intechopen.105508 [Google Scholar] [Crossref] 
  4. Berne, C., Ducret, A., Hardy, G. G., & Brun, Y. V. (2015). Adhesins involved in attachment to abiotic surfaces by Gram‐negative bacteria. Microbiology Spectrum, 3(4), 10.1128/microbiolspec.MB-0018-2015. https://doi.org/10.1128/microbiolspec.mb-0018-2015 [Google Scholar] [Crossref] 
  5. Blount, Z. D. (2015). The natural history of model organisms: The unexhausted potential of E. coli. eLife, 4, e05826. https://doi.org/10.7554/eLife.05826 [Google Scholar] [Crossref] 
  6. Blum, G., Ott, M., Lischewski, A., Ritter, A., Imrich, H., Tschäpe, H., & Hacker, J. (1994). Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infection and Immunity, 62(2), 606-614. https://doi.org/10.1128/iai.62.2.606-614.1994 [Google Scholar] [Crossref] 
  7. Bocian-Ostrzycka, K. M., Grzeszczuk, M. J., Banaś, A. M., & Jagusztyn-Krynicka, E. K. (2017). Bacterial thiol oxidoreductases—from basic research to new antibacterial strategies. Applied Microbiology and Biotechnology, 101(10), 3977-3989. https://doi.org/10.1007/s00253-017-8291-8 [Google Scholar] [Crossref] 
  8. Clark, D. J., & Maaløe, O. D. N. A. (1967). DNA replication and the division cycle in Escherichia coli. Journal of Molecular Biology, 23(1), 99-112. https://doi.org/10.1016/S0022-2836(67)80070-6 [Google Scholar] [Crossref] 
  9. Cugmas, B., Avberšek, M., Rosa, T., Godec, L., Štruc, E., Golob, M., & Zdovc, I. (2021). How accurate are veterinary clinicians employing flexicult vet for identification and antimicrobial susceptibility testing of urinary bacteria?. Antibiotics, 10(10), 1160. https://doi.org/10.3390/antibiotics10101160 [Google Scholar] [Crossref] 
  10. Dobrindt, U., Blum-Oehler, G., Nagy, G., Schneider, G., Johann, A., Gottschalk, G., & Hacker, J. (2002). Genetic structure and distribution of four pathogenicity islands (PAI I536 to PAI IV536) of uropathogenic Escherichia coli strain 536. Infection and Immunity, 70(11), 6365-6372. https://doi.org/10.1128/iai.70.11.6365-6372.2002 [Google Scholar] [Crossref] 
  11. Fındık, A. (2023). Escherichia coli Enfeksiyonları. Retrieved on January 3, 2023, from https://avys.omu.edu.tr/storage/app/public/afindik/72784/E.%20coli%20Enfeksiyonlar%C4%B1.pdf [Google Scholar]
  12. Freeman, S., & Herron, J. C. (2007). Evolutionary analysis (4th ed.). Benjamin Cummings. [Google Scholar]
  13. Gambushe, S. M., Zishiri, O. T., & El Zowalaty, M. E. (2022). Review of Escherichia coli O157: H7 prevalence, pathogenicity, heavy metal and antimicrobial resistance, African perspective. Infection and Drug Resistance, 15, 4645-4673. https://doi.org/10.2147/idr.s365269 [Google Scholar] [Crossref] 
  14. Hacker, J., & Kaper, J. B. (1999). The concept of pathogenicity islands (p. 1-11). In Kaper, J. B. & Hacker, J. (Eds.), Pathogenicity islands and other mobile virulence elements. ASM Press. [Google Scholar]
  15. Hacker, J., Blum-Oehler, G., Hochhut, B., & Dobrindt, U. (2003). The molecular basis of infectious diseases: pathogenicity islands and other mobile genetic elements. Acta Microbiologica et Immunologica Hungarica, 50(4), 321-330. https://doi.org/10.1556/amicr.50.2003.4.1 [Google Scholar] [Crossref] 
  16. Hacker, J., Blum-Oehler, G., Janke, B., Nagy, G., & Goebel, W. (1999). Pathogenicity islands of extraintestinal Escherichia coli (p. 59-76). In Kaper, J. B. & Hacker, J. (Eds.), Pathogenicity islands and other mobile virulence elements. ASM Press. [Google Scholar]
  17. Hacker, J., Knapp, S., & Goebel, W. (1983). Spontaneous deletions and flanking regions of the chromosomally inherited hemolysin determinant of an Escherichia coli O6 strain. Journal of Bacteriology, 154(3), 1145-1152. https://doi.org/10.1128/jb.154.3.1145-1152.1983 [Google Scholar] [Crossref] 
  18. Hampton, H. G., Watson, B. N., & Fineran, P. C. (2020). The arms race between bacteria and their phage foes. Nature, 577(7790), 327-336. https://doi.org/10.1038/s41586-019-1894-8 [Google Scholar] [Crossref] 
  19. Koch, R. (1893). Ueber den augenblicklichen Stand der bakteriologischen Cholera diagnose. Zeitschrift für Hygiene und Infektionskrankheiten, 14, 319-338. [Google Scholar]
  20. Kotzekidou, P. (Ed.). (2016). Food hygiene and toxicology in ready-to-eat foods. Academic Press. [Google Scholar]
  21. Levin, B. R., & Bergstrom, C. T. (2000). Bacteria are different: Observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 6981-6985. https://doi.org/10.1073/pnas.97.13.6981 [Google Scholar] [Crossref] 
  22. LibreTexts. (2023). 15.2: How Pathogens Cause Disease, Last updated Jan 1, 2023. OpenStax CNX Microbiology, https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(OpenStax)/15%3A_Microbial_Mechanisms_of_Pathogenicity/15.02%3A_How_Pathogens_Cause_Disease [Google Scholar]
  23. Manatsathit, S., Dupont, H. L., Farthing, M., Kositchaiwat, C., Leelakusolvong, S., Ramakrishna, B. S., Sabra, A., Speelman, P., Surangsrirat, S., & Working Party of the Program Committ of the Bangkok World Congress of Gastroenterology 2002 (2002). Guideline for the management of acute diarrhea in adults. Journal of Gastroenterology and Hepatology, 17 Suppl, S54-S71. https://doi.org/10.1046/j.1440-1746.17.s1.11.x [Google Scholar] [Crossref] 
  24. Moulin-Schouleur M., Répérant M., Laurent S., Brée A., Mignon-Grasteau S., Germon P., Rasschaert D., & Schouler C. (2007). Extraintestinal pathogenic Escherichia coli strains of avian and human origin: Link between phylogenetic relationships and common virulence patterns. Journal of Clinical Microbiology, 45(10), 3366-3376 https://doi.org/10.1128/jcm.00037-07 [Google Scholar] [Crossref] 
  25. Oh, Y. R., & Eom, G. T. (2021). Identification of a lactose-oxidizing enzyme in Escherichia coli and improvement of lactobionic acid production by recombinant expression of a quinoprotein glucose dehydrogenase from Pseudomonas taetrolens. Enzyme and Microbial Technology, 148, 109828. https://doi.org/10.1016/j.enzmictec.2021.109828 [Google Scholar] [Crossref] 
  26. Onyeberechiya, S. O., Ola, P. I., & Odeni, T. O. (2021). Bacteriological Load Analysis of Moringa oleifera Lam. Leaves Consumed in Guinea Savannah Vegetation Zones of Nigeria. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 75(1), 86-105. [Google Scholar]
  27. Oumnh.ox.ac.uk (2023). Oxford University Museum of Natural History Home to Earth, science, and nature. Retrieved on January 19, 2023, from https://oumnh.ox.ac.uk/bacterial-world [Google Scholar]
  28. Oxford Dictionaries. (2016). Definition of Germ in English from the Oxford dictionary. Oxford Dictionaries. Archived from the original on 6 April 2016. Retrieved on April 5, 2016. [Google Scholar]
  29. Peng, J., Zhang, X., Yang, J., Wang, J., Yang, E., Bin, W., Wei, C., Sun, M., & Jin, Q. (2006). The use of comparative genomic hybridization to characterize genome dynamics and diversity among the serotypes of Shigella. BMC Genomics, 7(1), 218. https://doi.org/10.1186/1471-2164-7-218 [Google Scholar] [Crossref] 
  30. Pokharel, P., Dhakal, S., & Dozois, C. M. (2023). The diversity of Escherichia coli pathotypes and vaccination strategies against this versatile bacterial pathogen. Microorganisms, 11(2), 344. https://doi.org/10.3390/microorganisms11020344 [Google Scholar] [Crossref] 
  31. Ramesh, A. K., Parreño, V., Schmidt, P. J., Lei, S., Zhong, W., Jiang, X., Emelko, M. B., & Yuan, L. (2020). Evaluation of the 50% infectious dose of human norovirus Cin-2 in gnotobiotic pigs: A comparison of classical and contemporary methods for endpoint estimation. Viruses, 12(9), 955. https://doi.org/10.3390/v12090955 [Google Scholar] [Crossref] 
  32. Rathore, S. S., Sathiyamoorthy, J., Lalitha, C., & Ramakrishnan, J. (2022). A holistic review on Cryptococcus neoformans. Microbial Pathogenesis, 166, 105521. https://doi.org/10.1016/j.micpath.2022.105521 [Google Scholar] [Crossref] 
  33. Saldaña, Z., Sánchez, E., Xicohtencatl-Cortes, J., Puente, J. L., & Girón, J. A. (2011). Surface structures involved in plant stomata and leaf colonization by Shiga-toxigenic Escherichia coli O157: H7. Frontiers in Microbiology, 2, 119. https://doi.org/10.3389/fmicb.2011.00119 [Google Scholar] [Crossref] 
  34. Samiei, H., Nazarian, S., Hajizade, A., & Kordbacheh, E. (2023). In silico design, production and immunization evaluation of a recombinant bivalent fusion protein candidate vaccine against E. coli O157: H7. International Immunopharmacology, 114, 109464. https://doi.org/10.1016/j.intimp.2022.109464 [Google Scholar] [Crossref] 
  35. Sawicka, B., Skiba, D., Pszczółkowski, P., & Krochmal-Marczak, B. (2022). Tuber Quality (pp. 45-90). In Sawicka, B., & Krochmal-Marczak, B. (Eds.), Jerusalem Artichoke Food Science and Technology. Interdisciplinary Biotechnological Advances. Springer. https://doi.org/10.1007/978-981-19-0805-7_3 [Google Scholar] [Crossref] 
  36. Schuetz, A. N. (2019). Emerging agents of gastroenteritis: Aeromonas, Plesiomonas, and the diarrheagenic pathotypes of Escherichia coli. Seminars in Diagnostic Pathology,36(3), 187-192. https://doi.org/10.1053/j.semdp.2019.04.012 [Google Scholar] [Crossref] 
  37. Smith, P., & Schuster, M. (2021). Inexpensive apparatus for high-quality imaging of microbial growth on agar plates. Frontiers in Microbiology, 12, 1750. https://doi.org/10.3389/fmicb.2021.689476 [Google Scholar] [Crossref] 
  38. Stewart, G. T. (1968). Limitations of the germ theory. The Lancet, 291(7551), 1077-1081. https://doi.org/10.1016/S0140-6736(68)91425-6 [Google Scholar] [Crossref] 
  39. Taylor, D. E. (1999). Bacterial tellurite resistance. Trends in Microbiology, 7(3), 111-115. https://doi.org/10.1016/S0966-842X(99)01454-7 [Google Scholar] [Crossref] 
  40. Trivedi, A., Gosai, J., Nakane, D., & Shrivastava, A. (2022). Design principles of the rotary type 9 secretion system. Frontiers in Microbiology, 13, 845563. https://doi.org/10.3389/fmicb.2022.845563 [Google Scholar] [Crossref] 
  41. Webb, S. A., & Kahler, C. M. (2008). Bench-to-bedside review: Bacterial virulence and subversion of host defences. Critical Care, 12(6), 234. https://doi.org/10.1186/cc7091 [Google Scholar] [Crossref] 
  42. WHO. (2018). E. coli. 7 February 2018. Retrieved on January 2, 2023, from https://www.who.int/news-room/fact-sheets/detail/e-coli [Google Scholar]
  43. Yang, D., Yang, Y., Qiao, P., Jiang, F., Zhang, X., Zhao, Z., Cai, T., Li, G., & Cai, W. (2023). Genomic island-encoded histidine kinase and response regulator coordinate mannose utilization with virulence in enterohemorrhagic Escherichia coli. Microbial Pathogenesis, 14(2), e0315222. https://doi.org/10.1128/mbio.03152-22 [Google Scholar] [Crossref] 
  44. Yang, L., & Li, Y. (2005). AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium–tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7. Biosensors and Bioelectronics, 20(7), 1407-1416. https://doi.org/10.1016/j.bios.2004.06.024 [Google Scholar] [Crossref]