Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2023, Vol. 4(1) 87-93

Impact of Different Nutrient Enrichment Concentrations on the Growth of Microalga Nannochloropsis sp. (Monodopsidaceae) Culture

Norsheen B. Sanuddin, Melodina D. Hairol, Cherry T. Nian, Rizal Jhunn F. Robles, Hadjiran A. Illud, Jubail S. Muyong, Jamrun H. Ebbah & Jurmin H. Sarri

pp. 87 - 93   |  DOI: https://doi.org/10.29329/actanatsci.2023.353.09   |  Manu. Number: MANU-2305-02-0005.R1

Published online: June 22, 2023  |   Number of Views: 37  |  Number of Download: 284


Abstract

Microalgae consist of unicellular algal species that can produce and accumulate a wide variety of biomolecules. In order to maintain a high cell density in a continuous phototrophic culture of algae, the nutrient can serve as the most important factor in enhancing cell density. In this study, the effect of different concentrations of nutrients on the cell density of microalga Nannochloropsis sp. cultured in the mega plastic box (with 50 L capacity) was investigated. Four groups of treatment with four replicates were tested: group A (including 5 gL^{-1} of ferric chloride, ammonium phosphate, and Urea), group B (including 10 gL^{-1} of ferric chloride, ammonium phosphate, and urea), group C (including 15 gL^{-1} of ferric chloride, ammonium phosphate, and urea), and group D (including 15 gL^{-1} of ferric chloride, ammonium phosphate, and urea with 40 gL^{-1} of cow manure). Results revealed that group C and group D achieved maximum density on day three as 86.39×106 cell mL^{-1} and 85.59×106 cell mL^{-1}, respectively, which were significantly (p≤0.05) higher than the cell density of groups A (58.01×106 cell mL^{-1}) and group B (70.67×106 cell mL^{-1}). Additionally, the increasing specific growth rate (SGR) of Nannochloropsis sp. cultured was obtained in group D at 0.308 day^{-1} after the culture period. From the result of the study, it is concluded that the concentrations of 15 gL^{-1} ferric chloride, ammonium phosphate, and urea (group C) and 15 gL^{-1} ferric chloride, ammonium phosphate, and urea combined with 40 gL^{-1} cow manure (group D) are capable of increasing cell density growth of microalga Nannochloropsis sp. cultured in a mega plastic box.

Keywords: Cell density, Growth, Microalgae, Nannochloropsis sp., Nutrient enrichment


How to Cite this Article?

APA 6th edition
Sanuddin, N.B., Hairol, M.D., Nian, C.T., Robles, R.J.F., Illud, H.A., Muyong, J.S., Ebbah, J.H. & Sarri, J.H. (2023). Impact of Different Nutrient Enrichment Concentrations on the Growth of Microalga Nannochloropsis sp. (Monodopsidaceae) Culture . Acta Natura et Scientia, 4(1), 87-93. doi: 10.29329/actanatsci.2023.353.09

Harvard
Sanuddin, N., Hairol, M., Nian, C., Robles, R., Illud, H., Muyong, J., Ebbah, J. and Sarri, J. (2023). Impact of Different Nutrient Enrichment Concentrations on the Growth of Microalga Nannochloropsis sp. (Monodopsidaceae) Culture . Acta Natura et Scientia, 4(1), pp. 87-93.

Chicago 16th edition
Sanuddin, Norsheen B., Melodina D. Hairol, Cherry T. Nian, Rizal Jhunn F. Robles, Hadjiran A. Illud, Jubail S. Muyong, Jamrun H. Ebbah and Jurmin H. Sarri (2023). "Impact of Different Nutrient Enrichment Concentrations on the Growth of Microalga Nannochloropsis sp. (Monodopsidaceae) Culture ". Acta Natura et Scientia 4 (1):87-93. doi:10.29329/actanatsci.2023.353.09.

References
  1. Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17(5), 304. https://doi.org/10.3390/md17050304 [Google Scholar] [Crossref] 
  2. Benner, P., Meier, L., Pfeffer, A., Krüger, K., Oropeza Vargas, J. E., & Weuster-Botz, D. (2022). Lab-scale photobioreactor systems: Principles, applications, and scalability. Bioprocess and Biosystems Engineering, 45(5), 791-813. https://doi.org/10.1007/s00449-022-02711-1 [Google Scholar] [Crossref] 
  3. Bogaard, A., Heaton, T. H., Poulton, P., & Merbach, I. (2007). The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science, 34(3), 335-343. https://doi.org/10.1016/j.jas.2006.04.009 [Google Scholar] [Crossref] 
  4. Chidambara-Murthy, K. N., Vanitha, A., Rajesha, J., Mahadeva-Swamy, M., Sowmya, P. R., & Ravishankar, G. A. (2005). In vivo antioxidant activity of carotenoids from Dunaliella salina—a green microalga. Life Sciences, 76(12), 1381-1390. https://doi.org/10.1016/j.lfs.2004.10.015 [Google Scholar] [Crossref] 
  5. Chu, W. L. (2012). Biotechnological applications of microalgae, International e-Journal of Science, Medicine & Education, 6(Suppl 1), S24-S37. [Google Scholar]
  6. Ciccone, M. M., Cortese, F., Gesualdo, M., Carbonara, S., Zito, A., Ricci, G., De Pascalis, F., Scicchitano, P., & Riccioni, G. (2013). Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators of Inflammation, 2013, 782137. https://doi.org/10.1155/2013/782137 [Google Scholar] [Crossref] 
  7. Dixit, R.B., & Suseela, M. R. (2013). Cyanobacteria: Potential candidates for drug discovery. Antonie Van Leeuwenhoek. 103(5), 947-961. https://doi.org/10.1007/s10482-013-9898-0 [Google Scholar] [Crossref] 
  8. Duong, V. T., Li, Y., Nowak, E., & Schenk, P. M. (2012). Microalgae isolation and selection for prospective biodiesel production. Energies, 5(6), 1835-1849. https://doi.org/10.3390/en5061835 [Google Scholar] [Crossref] 
  9. Durmaz, Y., & Erbil, G.Ç. (2017). Effect of light path length of tubes on growth rate of Nannochloropsis oculata using industrial scale tubular photobioreactor in the marine hatchery. Fresenius Environmental Bulletin, 26(7), 4783-4789. [Google Scholar]
  10. Durmaz, Y. (2007). Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture, 272(1-4), 717-722. https://doi.org/10.1016/j.aquaculture.2007.07.213 [Google Scholar] [Crossref] 
  11. Durmaz, Y., & Erbil, G. Ç. (2020). Comparison of industrial-scale tubular photobioreactor to FRP (Fiberglass reinforced plastic) panel photobioreactor on outdoor culture of Nannochloropsis oculata in the marine hatchery. Ege Journal of Fisheries and Aquatic Sciences, 37(4), 303-308. https://doi.org/10.12714/egejfas.37.3.13 [Google Scholar] [Crossref] 
  12. Erbil, G. Ç., & Durmaz, Y. (2020). Effects of myo-inositol concentration on growth and pigments of Nannochloropsis oculata culture. Ege Journal of Fisheries and Aquatic Sciences, 37(2), 195-199. https://doi.org/10.12714/egejfas.37.2.11 [Google Scholar] [Crossref] 
  13. Erbil, G. C., Elp, M., & Durmaz, Y. (2022). Effect of ferric chloride (FeCl3) concentration on pigment production of Porphyridium cruentum. International Aquatic Research, 14(2), 127-137. https://doi.org/10.22034/iar.2022.1950929.1234 [Google Scholar] [Crossref] 
  14. Fenton, O. (2012). Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): A review. Algal Research, 1(1), 49-56. https://doi.org/10.1016/j.algal.2012.03.003 [Google Scholar] [Crossref] 
  15. Garcı́a-González, A., & Ochoa, J. L. (1999). Anti-inflammatory activity of Debaryomyces hansenii Cu, Zn-SOD. Archives of Medical Research, 30(1), 69-73. https://doi.org/10.1016/S0188-0128(98)00005-0 [Google Scholar] [Crossref] 
  16. George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., & Mishra, S. (2014). Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus–A potential strain for bio-fuel production. Bioresource Technology, 171, 367-374. https://doi.org/10.1016/j.biortech.2014.08.086 [Google Scholar] [Crossref] 
  17. Giwa, A. (2017). Comparative cradle-to-grave life cycle assessment of biogas production from marine algae and cattle manure biorefineries. Bioresource Technology, 244, 1470-1479. https://doi.org/10.1016/j.biortech.2017.05.143 [Google Scholar] [Crossref] 
  18. Guzman, S., Gato, A., & Calleja, J. M. (2001). Anti-inflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 15(3), 224-230. https://doi.org/10.1002/ptr.715 [Google Scholar] [Crossref] 
  19. Hejazi, M.A., Holwerda, E., & Wijffels, R.H. (2004). Milking microalga Dunaliella salina for β‐carotene production in two‐phase bioreactors. Biotechnology and Bioengineering, 85(5), 475-481. https://doi.org/10.1002/bit.10914 [Google Scholar] [Crossref] 
  20. Huang, X., Huang, Z., Wen, W., & Yan, J. (2013). Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). Journal of Applied Phycology, 25, 129-137. https://doi.org/10.1007/s10811-012-9846-9 [Google Scholar] [Crossref] 
  21. Huleihel, M., Ishanu, V., Tal, J., & Arad, S. M. (2001). Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. Journal of Applied Phycology, 13(2), 127-134. https://doi.org/10.1023/A:1011178225912 [Google Scholar] [Crossref] 
  22. Jjemba, P. K. (2002). The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agriculture, Ecosystems & Environment, 93(1-3), 267-278. [Google Scholar]
  23. Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies, 6(9), 4607-4638. https://doi.org/10.3390/en6094607 [Google Scholar] [Crossref] 
  24. Lebeau, T., & Robert, J. M. (2003). Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales. Applied Microbiology and Biotechnology, 60, 612-623. https://doi.org/10.1007/s00253-002-1176-4 [Google Scholar] [Crossref] 
  25. Leu, S., & Boussiba, S. (2014). Advances in the production of high-value products by microalgae. Industrial Biotechnology, 10(3), 169-183. https://doi.org/10.1089/ind.2013.0039 [Google Scholar] [Crossref] 
  26. Low, C., & Toledo, M. I. (2015). Assessment of the shelf-life of Nannochloropsis oculata flocculates stored at different temperatures. Latin American Journal of Aquatic Research, 43(2), 315-321. https://doi.org/10.3856/vol43-issue2-fulltext-7 [Google Scholar] [Crossref] 
  27. Lu, Q., & Xiao, Y. (2022). From manure to high-value fertilizer: The employment of microalgae as a nutrient carrier for sustainable agriculture. Algal Research, 67, 102855. https://doi.org/10.1016/j.algal.2022.102855 [Google Scholar] [Crossref] 
  28. Mohan, S. V., Rohit, M. V., Chiranjeevi, P., Chandra, R., & Navaneeth, B. (2015). Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresource Technology, 184, 169-178. https://doi.org/10.1016/j.biortech.2014.10.056 [Google Scholar] [Crossref] 
  29. Mortensen, A. (2006). Carotenoids and other pigments as natural colorants. Pure and Applied Chemistry, 78(8), 1477-1491. https://doi.org/10.1351/pac200678081477 [Google Scholar] [Crossref] 
  30. Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635-648. https://doi.org/10.1007/s00253-004-1647-x [Google Scholar] [Crossref] 
  31. Skulberg, O. M. (2000). Microalgae as a source of bioactive molecules–experience from cyanophyte research. Journal of Applied Phycology, 12(3), 341-348. https://doi.org/10.1023/A:1008140403621 [Google Scholar] [Crossref] 
  32. Souza, C. M. M., Bastos, T. S., & dos Santos, M. C. (2021). Microalgae use in animal nutrition. Research, Society and Development, 10(16), e53101622986. https://doi.org/10.33448/rsd-v10i16.22986 [Google Scholar] [Crossref]