- Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17(5), 304. https://doi.org/10.3390/md17050304 [Google Scholar] [Crossref]
- Benner, P., Meier, L., Pfeffer, A., Krüger, K., Oropeza Vargas, J. E., & Weuster-Botz, D. (2022). Lab-scale photobioreactor systems: Principles, applications, and scalability. Bioprocess and Biosystems Engineering, 45(5), 791-813. https://doi.org/10.1007/s00449-022-02711-1 [Google Scholar] [Crossref]
- Bogaard, A., Heaton, T. H., Poulton, P., & Merbach, I. (2007). The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science, 34(3), 335-343. https://doi.org/10.1016/j.jas.2006.04.009 [Google Scholar] [Crossref]
- Chidambara-Murthy, K. N., Vanitha, A., Rajesha, J., Mahadeva-Swamy, M., Sowmya, P. R., & Ravishankar, G. A. (2005). In vivo antioxidant activity of carotenoids from Dunaliella salina—a green microalga. Life Sciences, 76(12), 1381-1390. https://doi.org/10.1016/j.lfs.2004.10.015 [Google Scholar] [Crossref]
- Chu, W. L. (2012). Biotechnological applications of microalgae, International e-Journal of Science, Medicine & Education, 6(Suppl 1), S24-S37. [Google Scholar]
- Ciccone, M. M., Cortese, F., Gesualdo, M., Carbonara, S., Zito, A., Ricci, G., De Pascalis, F., Scicchitano, P., & Riccioni, G. (2013). Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators of Inflammation, 2013, 782137. https://doi.org/10.1155/2013/782137 [Google Scholar] [Crossref]
- Dixit, R.B., & Suseela, M. R. (2013). Cyanobacteria: Potential candidates for drug discovery. Antonie Van Leeuwenhoek. 103(5), 947-961. https://doi.org/10.1007/s10482-013-9898-0 [Google Scholar] [Crossref]
- Duong, V. T., Li, Y., Nowak, E., & Schenk, P. M. (2012). Microalgae isolation and selection for prospective biodiesel production. Energies, 5(6), 1835-1849. https://doi.org/10.3390/en5061835 [Google Scholar] [Crossref]
- Durmaz, Y., & Erbil, G.Ç. (2017). Effect of light path length of tubes on growth rate of Nannochloropsis oculata using industrial scale tubular photobioreactor in the marine hatchery. Fresenius Environmental Bulletin, 26(7), 4783-4789. [Google Scholar]
- Durmaz, Y. (2007). Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture, 272(1-4), 717-722. https://doi.org/10.1016/j.aquaculture.2007.07.213 [Google Scholar] [Crossref]
- Durmaz, Y., & Erbil, G. Ç. (2020). Comparison of industrial-scale tubular photobioreactor to FRP (Fiberglass reinforced plastic) panel photobioreactor on outdoor culture of Nannochloropsis oculata in the marine hatchery. Ege Journal of Fisheries and Aquatic Sciences, 37(4), 303-308. https://doi.org/10.12714/egejfas.37.3.13 [Google Scholar] [Crossref]
- Erbil, G. Ç., & Durmaz, Y. (2020). Effects of myo-inositol concentration on growth and pigments of Nannochloropsis oculata culture. Ege Journal of Fisheries and Aquatic Sciences, 37(2), 195-199. https://doi.org/10.12714/egejfas.37.2.11 [Google Scholar] [Crossref]
- Erbil, G. C., Elp, M., & Durmaz, Y. (2022). Effect of ferric chloride (FeCl3) concentration on pigment production of Porphyridium cruentum. International Aquatic Research, 14(2), 127-137. https://doi.org/10.22034/iar.2022.1950929.1234 [Google Scholar] [Crossref]
- Fenton, O. (2012). Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): A review. Algal Research, 1(1), 49-56. https://doi.org/10.1016/j.algal.2012.03.003 [Google Scholar] [Crossref]
- Garcı́a-González, A., & Ochoa, J. L. (1999). Anti-inflammatory activity of Debaryomyces hansenii Cu, Zn-SOD. Archives of Medical Research, 30(1), 69-73. https://doi.org/10.1016/S0188-0128(98)00005-0 [Google Scholar] [Crossref]
- George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., & Mishra, S. (2014). Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus–A potential strain for bio-fuel production. Bioresource Technology, 171, 367-374. https://doi.org/10.1016/j.biortech.2014.08.086 [Google Scholar] [Crossref]
- Giwa, A. (2017). Comparative cradle-to-grave life cycle assessment of biogas production from marine algae and cattle manure biorefineries. Bioresource Technology, 244, 1470-1479. https://doi.org/10.1016/j.biortech.2017.05.143 [Google Scholar] [Crossref]
- Guzman, S., Gato, A., & Calleja, J. M. (2001). Anti-inflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 15(3), 224-230. https://doi.org/10.1002/ptr.715 [Google Scholar] [Crossref]
- Hejazi, M.A., Holwerda, E., & Wijffels, R.H. (2004). Milking microalga Dunaliella salina for β‐carotene production in two‐phase bioreactors. Biotechnology and Bioengineering, 85(5), 475-481. https://doi.org/10.1002/bit.10914 [Google Scholar] [Crossref]
- Huang, X., Huang, Z., Wen, W., & Yan, J. (2013). Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). Journal of Applied Phycology, 25, 129-137. https://doi.org/10.1007/s10811-012-9846-9 [Google Scholar] [Crossref]
- Huleihel, M., Ishanu, V., Tal, J., & Arad, S. M. (2001). Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. Journal of Applied Phycology, 13(2), 127-134. https://doi.org/10.1023/A:1011178225912 [Google Scholar] [Crossref]
- Jjemba, P. K. (2002). The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agriculture, Ecosystems & Environment, 93(1-3), 267-278. [Google Scholar]
- Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies, 6(9), 4607-4638. https://doi.org/10.3390/en6094607 [Google Scholar] [Crossref]
- Lebeau, T., & Robert, J. M. (2003). Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales. Applied Microbiology and Biotechnology, 60, 612-623. https://doi.org/10.1007/s00253-002-1176-4 [Google Scholar] [Crossref]
- Leu, S., & Boussiba, S. (2014). Advances in the production of high-value products by microalgae. Industrial Biotechnology, 10(3), 169-183. https://doi.org/10.1089/ind.2013.0039 [Google Scholar] [Crossref]
- Low, C., & Toledo, M. I. (2015). Assessment of the shelf-life of Nannochloropsis oculata flocculates stored at different temperatures. Latin American Journal of Aquatic Research, 43(2), 315-321. https://doi.org/10.3856/vol43-issue2-fulltext-7 [Google Scholar] [Crossref]
- Lu, Q., & Xiao, Y. (2022). From manure to high-value fertilizer: The employment of microalgae as a nutrient carrier for sustainable agriculture. Algal Research, 67, 102855. https://doi.org/10.1016/j.algal.2022.102855 [Google Scholar] [Crossref]
- Mohan, S. V., Rohit, M. V., Chiranjeevi, P., Chandra, R., & Navaneeth, B. (2015). Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresource Technology, 184, 169-178. https://doi.org/10.1016/j.biortech.2014.10.056 [Google Scholar] [Crossref]
- Mortensen, A. (2006). Carotenoids and other pigments as natural colorants. Pure and Applied Chemistry, 78(8), 1477-1491. https://doi.org/10.1351/pac200678081477 [Google Scholar] [Crossref]
- Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635-648. https://doi.org/10.1007/s00253-004-1647-x [Google Scholar] [Crossref]
- Skulberg, O. M. (2000). Microalgae as a source of bioactive molecules–experience from cyanophyte research. Journal of Applied Phycology, 12(3), 341-348. https://doi.org/10.1023/A:1008140403621 [Google Scholar] [Crossref]
- Souza, C. M. M., Bastos, T. S., & dos Santos, M. C. (2021). Microalgae use in animal nutrition. Research, Society and Development, 10(16), e53101622986. https://doi.org/10.33448/rsd-v10i16.22986 [Google Scholar] [Crossref]
|