Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2024, Vol. 5(1) 1-10

Calculation of Isothermal Compressibility and Bulk Modulus as a Function of Pressure in a Perovskite-Like Framework of [(C³H7)4N] [Mn(N(CN)2)3]  

Sedat Avcı & Mustafa Kurt

pp. 1 - 10   |  Manu. Number: MANU-2312-06-0001.R1

Published online: May 22, 2024  |   Number of Views: 20  |  Number of Download: 173


Abstract

The many distortions in solid material that are most easily triggered by factors like pressure are called its structural degrees of freedom. Zeolites, perovskites, coordination polymers and metal-organic frameworks (MOFs) are all members of the extensive and significant family of solids known as framework materials. In the last decade, it has been shown that perovskite-like framework materials have great potential applicable in solar panel cell production. The Perovskite-like framework, [(C_{3}H_{7})_{4}N)] [Mn(N(CN)_{2})_{3}] [TPrA][Mn(dca)_{3}] in short), has recently attracted scientists, due to its magnetism, ferroelectricity, luminescence, switchable dielectric behaviour, multiferroic behaviour, non-linear optical properties and also photovoltaic properties. Exerted pressure causes changes in the structural, optical, and electronic properties of perovskite and perovskite-like compounds. As a result of these effects, these compounds present phase transitions at certain pressures. The [TPrA][Mn(dca)_{3}] compound also exhibits two structural phase transitions at 0.3 GPa and 3.0 GPa pressure. In this study, we calculated some important thermodynamic parameters, which are the isothermal Grüneisen value, isothermal compressibility, and Bulk modulus, as a function of pressure to analyse phase transition dynamics by using observed volume and frequency values from the literature. The Bulk modulus values were determined at 9.86 GPa for the Pcnb -phase and 36 GPa for the P21/n -phase by using calculated isothermal compressibility values. Our results confirm that the perovskite-like [TPrA][Mn(dca)_{3}] compound is a good candidate for solar panel cell production, as corroborated in the literature.

Keywords: Perovskite-like frameworks, Structural phase transition, Grüneisen value, Bulk modulus, Isothermal compressibility


How to Cite this Article?

APA 6th edition
Avci, S. & Kurt, M. (2024). Calculation of Isothermal Compressibility and Bulk Modulus as a Function of Pressure in a Perovskite-Like Framework of [(C³H7)4N] [Mn(N(CN)2)3]   . Acta Natura et Scientia, 5(1), 1-10.

Harvard
Avci, S. and Kurt, M. (2024). Calculation of Isothermal Compressibility and Bulk Modulus as a Function of Pressure in a Perovskite-Like Framework of [(C³H7)4N] [Mn(N(CN)2)3]   . Acta Natura et Scientia, 5(1), pp. 1-10.

Chicago 16th edition
Avci, Sedat and Mustafa Kurt (2024). "Calculation of Isothermal Compressibility and Bulk Modulus as a Function of Pressure in a Perovskite-Like Framework of [(C³H7)4N] [Mn(N(CN)2)3]   ". Acta Natura et Scientia 5 (1):1-10.

References
  1. Agyei-Tuffour, B., Doumon, N. Y., Rwenyagila, E. R., Asare, J., Oyewole, O. K., Shen, Z., Petoukhoff, C. E., Zebaze Kana, M. G., Ocarroll, D. M., & Soboyejo, W O. (2017). Pressure effects on interfacial surface contacts and performance of organic solar cells. Journal of Applied Physics, 122(20), 205501. https://doi.org/10.1063/1.5001765 [Google Scholar] [Crossref] 
  2. Agyei-Tuffour, B., Rwenyagila, E. R., Asare, J., Oyewole, O. K., Zebaze Kana, M. G., O’Carroll, D. M., & Soboyejo, W. O. (2016). Influence of pressure on contacts between layers in organic photovoltaic cells. Advanced Materials Research, 1132, 204-216. https://doi.org/10.4028/www.scientific.net/AMR.1132.204 [Google Scholar] [Crossref] 
  3. Assirey, E. A. R. (2019). Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharmaceutical Journal, 27(6), 817-829. https://doi.org/10.1016/j.jsps.2019.05.003 [Google Scholar] [Crossref] 
  4. Bermúdez-García, J. M., Sánchez-Andújar, M., Yáñez-Vilar, S., Castro-García, S., Artiaga, R., López-Beceiro, J., Botana, L., Alegría, Á., & Señarís-Rodríguez, M. A. (2015). Role of temperature and pressure on the multisensitive multiferroic dicyanamide framework [TPrA][Mn(dca)3] with perovskite-like structure. Inorganic Chemistry, 54(24), 11680-11687. https://doi.org/10.1021/acs.inorgchem.5b01652 [Google Scholar] [Crossref] 
  5. Bermúdez-García, J. M., Sánchez-Andújar, M., Castro-García, S., López-Beceiro, J., Artiaga, R., & Señarís-Rodríguez, M. A. (2017a). Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nature Communications, 8(1), 15715. https://doi.org/10.1038/ncomms15715 [Google Scholar] [Crossref] 
  6. Bermúdez-García, J. M., Sánchez-Andújar, M., & Señarís-Rodríguez, M. A. (2017b). A new playground for organic–inorganic hybrids: Barocaloric materials for pressure-induced solid-state cooling. The Journal of Physical Chemistry Letters, 8(18), 4419-4423. https://doi.org/10.1021/acs.jpclett.7b01845 [Google Scholar] [Crossref] 
  7. Bermúdez-García, J. M., Yáñez-Vilar, S., García-Fernández, A., Sánchez-Andújar, M., Castro-García, S., López-Beceiro, J., Artiaga, R., Dilshad, M., Moya, X., & Señarís-Rodríguez, M. A. (2018). Giant barocaloric tunability in [(CH3CH2CH2)4N]Cd[N(CN)2]3 hybrid perovskite. Journal of Materials Chemistry C, 6(37), 9867-9874. https://doi.org/10.1039/C7TC03136J [Google Scholar] [Crossref] 
  8. Einstein, A. (1907). Die Plancksche Theorie der Strahlung und die Theorie der spezifischen wärme. Annalen der Physik, 327(1), 180-190. https://doi.org/10.1002/andp.19063270110 [Google Scholar] [Crossref] 
  9. Grinberg, I., West, D. V., Torres, M., Gou, G., Stein, D. M., Wu, L., Chen, G., Gallo, E. M., Akbashev, A. R., Davies, P. K., Spanier, J. E., & Rappe, A. M. (2013). Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature, 503(7477), 509-512. https://doi.org/10.1038/nature12622 [Google Scholar] [Crossref] 
  10. Grüneisen, E. (1912). Theorie des festen Zustandes einatomiger Elemente. Annalen der Physik, 344(12), 257-306. https://doi.org/10.1002/andp.19123441202 [Google Scholar] [Crossref] 
  11. Huang, J., Yuan, Y., Shao, Y., & Yan, Y. (2017). Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2(7), 17042. https://doi.org/10.1038/natrevmats.2017.42 [Google Scholar] [Crossref] 
  12. Jošt, M., Köhnen, E., Al-Ashouri, A., Bertram, T., Tomšič, Š., Magomedov, A., Kasparavicius, E., Kodalle, T., Lipovšek, B., Getautis, V., Schlatmann, R., Kaufmann, C. A., Albrecht, S., & Topič, M. (2022). Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Letters, 7(4), 1298-1307. https://doi.org/10.1021/acsenergylett.2c00274 [Google Scholar] [Crossref] 
  13. Kurt, A. (2020). Pressure dependence of the Raman modes for orthorhombic and monoclinic phases of CsPbI3 at room temperature. Journal of Applied Physics, 128(7), 075106. https://doi.org/10.1063/5.0012355 [Google Scholar] [Crossref] 
  14. Kurt, A. (2022). Calculation of Gruneisen parameter, compressibility, and bulk modulus as functions of pressure in (C6H5CH2NH3)2PBI4. Çanakkale Onsekiz Mart University Journal of Advanced Research in Natural and Applied Sciences, 8(1), 63-75. https://doi.org/10.28979/jarnas.1003367 [Google Scholar] [Crossref] 
  15. Li, Q., Zhang, L., Chen, Z., & Quan, Z. (2019). Metal halide perovskites under compression. Journal of Materials Chemistry A, 7(27), 16089-16108. https://doi.org/10.1039/C9TA04930D [Google Scholar] [Crossref] 
  16. Mączka, M., Collings, I. E., Leite, F. F., & Paraguassu, W. (2019). Raman and single-crystal X-ray diffraction evidence of pressure-induced phase transitions in a perovskite-like framework of [(C3H7)4N] [Mn(N(CN)2)3]. Dalton Transactions, 48(25), 9072-9078. https://doi.org/10.1039/C9DT01648A [Google Scholar] [Crossref] 
  17. Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, M. J., Kim, Y. K., Kim, K. S., Kim, M. G., Shin, T. J., & Seok, S. I. (2021). Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598(7881), 444-450. https://doi.org/10.1038/s41586-021-03964-8 [Google Scholar] [Crossref] 
  18. Oyelade, O. V., Oyewole, O. K., Oyewole, D. O., Adeniji, S. A., Ichwani, R., Sanni, D. M., & Soboyejo, W. O. (2020). Pressure-assisted fabrication of perovskite solar cells. Scientific Reports, 10(1), 7183. https://doi.org/10.1038/s41598-020-64090-5 [Google Scholar] [Crossref] 
  19. Shen, Z., Wang, X., Luo, B., & Li, L. (2015). BaTiO3–BiYbO3 perovskite materials for energy storage applications. Journal of Materials Chemistry A, 3(35), 18146-18153. https://doi.org/10.1039/C5TA03614C [Google Scholar] [Crossref] 
  20. Stacey, F. D., & Hodgkinson, J. H. (2019). Thermodynamics with the Grüneisen parameter: Fundamentals and applications to high pressure physics and geophysics. Physics of the Earth and Planetary Interiors, 286, 42-68. https://doi.org/10.1016/j.pepi.2018.10.006 [Google Scholar] [Crossref] 
  21. Tan, J. C., & Cheetham, A. K. (2011). Mechanical properties of hybrid inorganic–organic framework materials: Establishing fundamental structure–property relationships. Chemical Society Reviews, 40(2), 1059-1080. https://doi.org/10.1039/C0CS00163E [Google Scholar] [Crossref] 
  22. Wang, W., Tadé, M. O., & Shao, Z. (2015). Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 44(15), 5371-5408. https://doi.org/10.1039/C5CS00113G [Google Scholar] [Crossref] 
  23. Xiao, G., Cao, Y., Qi, G., Wang, L., Liu, C., Ma, Z., Yang, X., Sui, Y., Zheng, W., & Zou, B. (2017). Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals. Journal of the American Chemical Society, 139(29), 10087-10094. https://doi.org/10.1021/jacs.7b05260 [Google Scholar] [Crossref] 
  24. Xiao, G., Zhu, C., Ma, Y., Liu, B., Zou, G., & Zou, B. (2014). Unexpected room‐temperature ferromagnetism in nanostructured Bi2Te3. Angewandte Chemie International Edition, 53(3), 729-733. https://doi.org/10.1002/anie.201309416 [Google Scholar] [Crossref] 
  25. Yurtseven, H., & Cebeci, A. (2015). Pressure dependence of the Raman modes related to the phase transitions in cyclohexane. Acta Physica Polonica A, 127(3), 744-747. https://doi.org/10.12693/aphyspola.127.744 [Google Scholar] [Crossref] 
  26. Yurtseven, H., & Kurt, M. (2011). Pressure dependence of the Raman frequency shifts related to the thermodynamic quantities in phase II of s-triazine. Indian Journal of Physics, 85, 615-628. https://doi.org/10.1007/s12648-011-0064-0 [Google Scholar] [Crossref] 
  27. Yurtseven, H., & Ünlü, D. (2015). Temperature and pressure effect on the Raman frequencies calculated from the crystal volume in the [Google Scholar]
  28. γ-phase of solid nitrogen. Journal of Applied Spectroscopy, 82(4), 700-704. https://doi.org/10.1007/s10812-015-0166-0 [Google Scholar] [Crossref]