- Agyei-Tuffour, B., Doumon, N. Y., Rwenyagila, E. R., Asare, J., Oyewole, O. K., Shen, Z., Petoukhoff, C. E., Zebaze Kana, M. G., Ocarroll, D. M., & Soboyejo, W O. (2017). Pressure effects on interfacial surface contacts and performance of organic solar cells. Journal of Applied Physics, 122(20), 205501. https://doi.org/10.1063/1.5001765 [Google Scholar] [Crossref]
- Agyei-Tuffour, B., Rwenyagila, E. R., Asare, J., Oyewole, O. K., Zebaze Kana, M. G., O’Carroll, D. M., & Soboyejo, W. O. (2016). Influence of pressure on contacts between layers in organic photovoltaic cells. Advanced Materials Research, 1132, 204-216. https://doi.org/10.4028/www.scientific.net/AMR.1132.204 [Google Scholar] [Crossref]
- Assirey, E. A. R. (2019). Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharmaceutical Journal, 27(6), 817-829. https://doi.org/10.1016/j.jsps.2019.05.003 [Google Scholar] [Crossref]
- Bermúdez-García, J. M., Sánchez-Andújar, M., Yáñez-Vilar, S., Castro-García, S., Artiaga, R., López-Beceiro, J., Botana, L., Alegría, Á., & Señarís-Rodríguez, M. A. (2015). Role of temperature and pressure on the multisensitive multiferroic dicyanamide framework [TPrA][Mn(dca)3] with perovskite-like structure. Inorganic Chemistry, 54(24), 11680-11687. https://doi.org/10.1021/acs.inorgchem.5b01652 [Google Scholar] [Crossref]
- Bermúdez-García, J. M., Sánchez-Andújar, M., Castro-García, S., López-Beceiro, J., Artiaga, R., & Señarís-Rodríguez, M. A. (2017a). Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nature Communications, 8(1), 15715. https://doi.org/10.1038/ncomms15715 [Google Scholar] [Crossref]
- Bermúdez-García, J. M., Sánchez-Andújar, M., & Señarís-Rodríguez, M. A. (2017b). A new playground for organic–inorganic hybrids: Barocaloric materials for pressure-induced solid-state cooling. The Journal of Physical Chemistry Letters, 8(18), 4419-4423. https://doi.org/10.1021/acs.jpclett.7b01845 [Google Scholar] [Crossref]
- Bermúdez-García, J. M., Yáñez-Vilar, S., García-Fernández, A., Sánchez-Andújar, M., Castro-García, S., López-Beceiro, J., Artiaga, R., Dilshad, M., Moya, X., & Señarís-Rodríguez, M. A. (2018). Giant barocaloric tunability in [(CH3CH2CH2)4N]Cd[N(CN)2]3 hybrid perovskite. Journal of Materials Chemistry C, 6(37), 9867-9874. https://doi.org/10.1039/C7TC03136J [Google Scholar] [Crossref]
- Einstein, A. (1907). Die Plancksche Theorie der Strahlung und die Theorie der spezifischen wärme. Annalen der Physik, 327(1), 180-190. https://doi.org/10.1002/andp.19063270110 [Google Scholar] [Crossref]
- Grinberg, I., West, D. V., Torres, M., Gou, G., Stein, D. M., Wu, L., Chen, G., Gallo, E. M., Akbashev, A. R., Davies, P. K., Spanier, J. E., & Rappe, A. M. (2013). Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature, 503(7477), 509-512. https://doi.org/10.1038/nature12622 [Google Scholar] [Crossref]
- Grüneisen, E. (1912). Theorie des festen Zustandes einatomiger Elemente. Annalen der Physik, 344(12), 257-306. https://doi.org/10.1002/andp.19123441202 [Google Scholar] [Crossref]
- Huang, J., Yuan, Y., Shao, Y., & Yan, Y. (2017). Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2(7), 17042. https://doi.org/10.1038/natrevmats.2017.42 [Google Scholar] [Crossref]
- Jošt, M., Köhnen, E., Al-Ashouri, A., Bertram, T., Tomšič, Š., Magomedov, A., Kasparavicius, E., Kodalle, T., Lipovšek, B., Getautis, V., Schlatmann, R., Kaufmann, C. A., Albrecht, S., & Topič, M. (2022). Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Letters, 7(4), 1298-1307. https://doi.org/10.1021/acsenergylett.2c00274 [Google Scholar] [Crossref]
- Kurt, A. (2020). Pressure dependence of the Raman modes for orthorhombic and monoclinic phases of CsPbI3 at room temperature. Journal of Applied Physics, 128(7), 075106. https://doi.org/10.1063/5.0012355 [Google Scholar] [Crossref]
- Kurt, A. (2022). Calculation of Gruneisen parameter, compressibility, and bulk modulus as functions of pressure in (C6H5CH2NH3)2PBI4. Çanakkale Onsekiz Mart University Journal of Advanced Research in Natural and Applied Sciences, 8(1), 63-75. https://doi.org/10.28979/jarnas.1003367 [Google Scholar] [Crossref]
- Li, Q., Zhang, L., Chen, Z., & Quan, Z. (2019). Metal halide perovskites under compression. Journal of Materials Chemistry A, 7(27), 16089-16108. https://doi.org/10.1039/C9TA04930D [Google Scholar] [Crossref]
- Mączka, M., Collings, I. E., Leite, F. F., & Paraguassu, W. (2019). Raman and single-crystal X-ray diffraction evidence of pressure-induced phase transitions in a perovskite-like framework of [(C3H7)4N] [Mn(N(CN)2)3]. Dalton Transactions, 48(25), 9072-9078. https://doi.org/10.1039/C9DT01648A [Google Scholar] [Crossref]
- Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, M. J., Kim, Y. K., Kim, K. S., Kim, M. G., Shin, T. J., & Seok, S. I. (2021). Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598(7881), 444-450. https://doi.org/10.1038/s41586-021-03964-8 [Google Scholar] [Crossref]
- Oyelade, O. V., Oyewole, O. K., Oyewole, D. O., Adeniji, S. A., Ichwani, R., Sanni, D. M., & Soboyejo, W. O. (2020). Pressure-assisted fabrication of perovskite solar cells. Scientific Reports, 10(1), 7183. https://doi.org/10.1038/s41598-020-64090-5 [Google Scholar] [Crossref]
- Shen, Z., Wang, X., Luo, B., & Li, L. (2015). BaTiO3–BiYbO3 perovskite materials for energy storage applications. Journal of Materials Chemistry A, 3(35), 18146-18153. https://doi.org/10.1039/C5TA03614C [Google Scholar] [Crossref]
- Stacey, F. D., & Hodgkinson, J. H. (2019). Thermodynamics with the Grüneisen parameter: Fundamentals and applications to high pressure physics and geophysics. Physics of the Earth and Planetary Interiors, 286, 42-68. https://doi.org/10.1016/j.pepi.2018.10.006 [Google Scholar] [Crossref]
- Tan, J. C., & Cheetham, A. K. (2011). Mechanical properties of hybrid inorganic–organic framework materials: Establishing fundamental structure–property relationships. Chemical Society Reviews, 40(2), 1059-1080. https://doi.org/10.1039/C0CS00163E [Google Scholar] [Crossref]
- Wang, W., Tadé, M. O., & Shao, Z. (2015). Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 44(15), 5371-5408. https://doi.org/10.1039/C5CS00113G [Google Scholar] [Crossref]
- Xiao, G., Cao, Y., Qi, G., Wang, L., Liu, C., Ma, Z., Yang, X., Sui, Y., Zheng, W., & Zou, B. (2017). Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals. Journal of the American Chemical Society, 139(29), 10087-10094. https://doi.org/10.1021/jacs.7b05260 [Google Scholar] [Crossref]
- Xiao, G., Zhu, C., Ma, Y., Liu, B., Zou, G., & Zou, B. (2014). Unexpected room‐temperature ferromagnetism in nanostructured Bi2Te3. Angewandte Chemie International Edition, 53(3), 729-733. https://doi.org/10.1002/anie.201309416 [Google Scholar] [Crossref]
- Yurtseven, H., & Cebeci, A. (2015). Pressure dependence of the Raman modes related to the phase transitions in cyclohexane. Acta Physica Polonica A, 127(3), 744-747. https://doi.org/10.12693/aphyspola.127.744 [Google Scholar] [Crossref]
- Yurtseven, H., & Kurt, M. (2011). Pressure dependence of the Raman frequency shifts related to the thermodynamic quantities in phase II of s-triazine. Indian Journal of Physics, 85, 615-628. https://doi.org/10.1007/s12648-011-0064-0 [Google Scholar] [Crossref]
- Yurtseven, H., & Ünlü, D. (2015). Temperature and pressure effect on the Raman frequencies calculated from the crystal volume in the [Google Scholar]
- γ-phase of solid nitrogen. Journal of Applied Spectroscopy, 82(4), 700-704. https://doi.org/10.1007/s10812-015-0166-0 [Google Scholar] [Crossref]
|