Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2024, Vol. 5(1) 11-18

The Preventive Effect of N-Acetylcysteine on Liver Tissue Against Doxorubicin-Induced Oxidative Stress in Rats

Suat Çakına, Şamil Öztürk & Latife Ceyda İrkin

pp. 11 - 18   |  Manu. Number: MANU-2312-04-0004.R2

Published online: May 22, 2024  |   Number of Views: 11  |  Number of Download: 195


Abstract

Doxorubicin (DOX) is a chemotherapeutic agent and is widely used in cancer treatment. There are some studies suggesting oxidative stress-induced toxic changes in the liver due to DOX administration. The aim of this study was to reveal the oxidative damage of DOX in liver tissue at molecular level and to evaluate the protective effect of N-acetyl cysteine (NAC) against DOX oxidative damage. Twenty four rats weighing 150-200 g were randomly divided into four equal groups; group 1: control, group 2: received a single dose of DOX, group 3: received NAC for 28 days and group 4: received a single dose of DOX, followed by NAC for 28 days. At the end of the experiment, liver tissues were taken from all animals. Total Antioxidant Capacity (TAC), Total Oxidant Capacity (TOC) levels were determined in these samples by spectrophotometric methods. The histopathological changes of liver tissue were observed routinely in histological staining. It was determined that TOC level increased, TAC levels decreased in the group given DOX compared to the control group. In addition, TAC levels increased in the DOX+NAC group. It was showed the occurrence of congestion in portal triad, and pycnotic cells degeneration in DOX group. It was concluded that DOX administration increased oxidative stress and NAC administration could prevent the increased oxidative stress (p<0.05). NAC caused modulatory effects on oxidative stress and antioxidant redox system in DOX-induced liver toxicity in the rat.

Keywords: Doxorubicin, N-Acetylcysteine, Liver, Oxidative stress


How to Cite this Article?

APA 6th edition
Cakina, S., Ozturk, S. & Irkin, L.C. (2024). The Preventive Effect of N-Acetylcysteine on Liver Tissue Against Doxorubicin-Induced Oxidative Stress in Rats . Acta Natura et Scientia, 5(1), 11-18.

Harvard
Cakina, S., Ozturk, S. and Irkin, L. (2024). The Preventive Effect of N-Acetylcysteine on Liver Tissue Against Doxorubicin-Induced Oxidative Stress in Rats . Acta Natura et Scientia, 5(1), pp. 11-18.

Chicago 16th edition
Cakina, Suat, Samil Ozturk and Latife Ceyda Irkin (2024). "The Preventive Effect of N-Acetylcysteine on Liver Tissue Against Doxorubicin-Induced Oxidative Stress in Rats ". Acta Natura et Scientia 5 (1):11-18.

References
  1. Aljobaily, N., Viereckl, M. J., Hydock, D. S., Aljobaily, H., Wu, T.-Y., Busekrus, R., & Han, Y. (2020). Creatine alleviates doxorubicin-induced liver damage by inhibiting liver fibrosis, inflammation, oxidative stress, and cellular senescence. Nutrients, 13(1), 41. https://doi.org/10.3390/nu13010041 [Google Scholar] [Crossref] 
  2. Alshabanah, O. A., Hafez, M. M., Al-Harbi, M. M., Hassan, Z. K., Al Rejaie, S. S., Asiri, Y. A., & Sayed-Ahmed, M. M. (2010). Doxorubicin toxicity can be ameliorated during antioxidant L-carnitine supplementation. Oxidative Medicine and Cellular Longevity, 3(6), 428-433. https://doi.org/10.4161/oxim.3.6.14416 [Google Scholar] [Crossref] 
  3. Arakawa, M., & Ito, Y. (2007). N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. Cerebellum, 6(4), 308-314. https://doi.org/10.1080/14734220601142878 [Google Scholar] [Crossref] 
  4. Bilgic, S., & Ozgocmen, M. (2019). The protective effect of misoprostol against doxorubicin induced liver injury. Biotechnic & Histochemistry, 94(8), 583-591. https://doi.org/10.1080/10520295.2019.1605457 [Google Scholar] [Crossref] 
  5. Biller, B. (2014). Metronomic chemotherapy in veterinary patients with cancer: rethinking the targets and strategies of chemotherapy. The Veterinary Clinics of North America. Small Animal Practice, 44(5), 817–829. https://doi.org/10.1016/j.cvsm.2014.05.003 [Google Scholar] [Crossref] 
  6. Bulucu, F., Ocal, R., Karadurmus, N., Sahin, M., Kenar, L., Aydin, A., & Yaman, H. (2009). Effects of N-acetylcysteine, deferoxamine and selenium on doxorubicin-induced hepatotoxicity. Biological Trace Element Research, 132(1-3), 184-196. https://doi.org/10.1007/s12011-009-8377-y [Google Scholar] [Crossref] 
  7. El-Sayyad, H. I., Ismail, M. F., Shalaby, F. M., Abou-El-Magd, R. F., Gaur, R. L., Fernando, A., Raj, M. H. G., & Ouhtit, A. (2009). Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. International Journal of Biological Sciences, 5(5), 466-473. https://doi.org/10.7150/ijbs.5.466 [Google Scholar] [Crossref] 
  8. Gibson-Corley, K. N., Olivier, A. K., & Meyerholz, D. K. (2013). Principles for valid histopathologic scoring in research. Veterinary Pathology, 50(6), 1007–1015. https://doi.org/10.1177/0300985813485099 [Google Scholar] [Crossref] 
  9. Hjelle, J. J., & Petersen, D. R. (1983). Metabolism of malondialdehyde by rat liver aldehyde dehydrogenase. Toxicology and Applied Pharmacology, 70(1), 57-66. https://doi.org/10.1016/0041-008X(83)90179-5 [Google Scholar] [Crossref] 
  10. Koçkar, M. C., Nazıroğlu, M., Çelik, Ö., Tola, H. T., Bayram, D., & Koyu, A. (2010). N-acetylcysteine modulates doxorubicin-induced oxidative stress and antioxidant vitamin concentrations in liver of rats. Cell Biochemistry and Function, 28(8), 673-677. https://doi.org/10.1002/cbf.1707 [Google Scholar] [Crossref] 
  11. Li, P., Wu, M., Wang, J., Sui, Y., Liu, S., & Shi, D. (2016). NAC selectively inhibit cancer telomerase activity: A higher redox homeostasis threshold exists in cancer cells. Redox Biology, 8, 91-97. https://doi.org/10.1016/j.redox.2015.12.001 [Google Scholar] [Crossref] 
  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6 [Google Scholar] [Crossref] 
  13. Moslehi, J. J. (2016). Cardiovascular toxic effects of targeted cancer therapies. The New England Journal of Medicine, 375(15), 1457-1467. https://doi.org/10.1056/nejmra1100265 [Google Scholar] [Crossref] 
  14. Nagasaki, H., Nakano, H., Boudjema, K., Jaeck, D., Alexandre, E., Baek, Y., Kitamura, N., Yamaguchi, M., & Kumada, K. (1998). Efficacy of preconditioning with N-acetylcysteine against reperfusion injury after prolonged cold ischaemia in rats liver in which glutathione had been reduced by buthionine sulphoximine. European Journal of Surgery, 164(2), 139-146. https://doi.org/10.1080/110241598750004805 [Google Scholar] [Crossref] 
  15. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3 [Google Scholar] [Crossref] 
  16. Otrubová, O., Turecký, L., Uličná, O., Janega, P., Luha, J., & Muchová, J. (2018). Therapeutic effects of N-acetyl-L-cysteine on liver damage induced by long-term CCl4 administration. General Physiology and Biophysics, 37(1), 23-31. https://doi.org/10.4149/gpb_2017016 [Google Scholar] [Crossref] 
  17. Prasanna, P. L., Renu, K., & Gopalakrishnan, A. V. (2020). New molecular and biochemical insights of doxorubicin-induced hepatotoxicity. Life Sciences, 250, 117599. https://doi.org/10.1016/j.lfs.2020.117599 [Google Scholar] [Crossref] 
  18. Rivankar, S. (2014). An overview of doxorubicin formulations in cancer therapy. Journal of Cancer Research and Therapeutics, 10(4), 853–858. https://doi.org/10.4103/0973-1482.139267 [Google Scholar] [Crossref] 
  19. Saleh, D. O., Mahmoud, S. S., Hassan, A., & Sanad, E. F. (2022). Doxorubicin-induced hepatic toxicity in rats: Mechanistic protective role of Omega-3 fatty acids through Nrf2/HO-1 activation and PI3K/Akt/GSK-3β axis modulation. Saudi Journal of Biological Sciences, 29(7), 103308. https://doi.org/10.1016/j.sjbs.2022.103308 [Google Scholar] [Crossref] 
  20. Samuni, Y., Goldstein, S., Dean, O. M., & Berk, M. (2013). The chemistry and biological activities of N-acetylcysteine. Biochimica et Biophysica Acta, 1830(8), 4117–4129. https://doi.org/10.1016/j.bbagen.2013.04.016 [Google Scholar] [Crossref] 
  21. Saricaoglu, F., Dal, D., Salman, A. E., Atay, O. A., Doral, M. N., Salman, M. A., Kilinç, K., & Aypar, U. (2005). Effect of low-dose N-acetyl-cysteine infusion on tourniquet-induced ischaemia-reperfusion injury in arthroscopic knee surgery. Acta Anaesthesiologica Scandinavica, 49(6), 847-851. https://doi.org/10.1111/j.1399-6576.2005.00722.x [Google Scholar] [Crossref] 
  22. Sikandar, A., Farhat, K., Afzal, A., Ajmal, K., Laeeq, M., & Khokhar, A. (2020). Protective effects of trimetazidine against doxorubicin-induced cardiotoxicity and hepatotoxicity in mice. Journal of Ayub Medical College, Abbottabad: JAMC, 32(3), 304-309. [Google Scholar]
  23. Timm, K. N., Ball, V., Miller, J. J., Savic, D., West, J. A., Griffin, J. L., & Tyler, D. J. (2021). Metabolic effects of doxorubicin on the rat liver assessed with hyperpolarized MRI and metabolomics. Frontiers in Physiology, 12, 782745. https://doi.org/10.3389/fphys.2021.782745 [Google Scholar] [Crossref] 
  24. Yu, X., Ruan, Y., Huang, X., Dou, L., Lan, M., Cui, J., & Shen, T. (2020). Dexrazoxane ameliorates doxorubicin-induced cardiotoxicity by inhibiting both apoptosis and necroptosis in cardiomyocytes. Biochemical and Biophysical Research Communications, 523(1), 140–146. https://doi.org/10.1016/j.bbrc.2019.12.027 [Google Scholar] [Crossref] 
  25. Zhang, J., Wang, M., Ding, W., Zhao, M., Ye, J., Xu, Y., Wang, Z., Ye, D., Li, D., Liu, J., & Wan, J. (2020). Resolvin E1 protects against doxorubicin-induced cardiotoxicity by inhibiting oxidative stress, autophagy and apoptosis by targeting AKT/mTOR signaling. Biochemical Pharmacology, 180, 114188. https://doi.org/10.1016/j.bcp.2020.114188 [Google Scholar] [Crossref]