Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2024, Vol. 5(1) 57-68

Investigation of the Chemical Composition of the Shell Structure of Mytilus galloprovincialis Mussel From Kefken, Türkiye

Bayram Kızılkaya, Harun Yıldız, Sefa Acarlı & Pervin Vural

pp. 57 - 68   |  Manu. Number: MANU-2402-24-0003

Published online: May 22, 2024  |   Number of Views: 5  |  Number of Download: 90


In this study, the chemical composition of Mytilus galloprovincialis shells was examined. As known, the main component of shell composition in bivalves is calcium carbonate, which constitutes approximately 94% of the shell. The zero charge points (PZC) of the shells were determined in the study. The PZC value indicates the surface charge state of the shells. The PZC value of the shells was determined to be 8.39. The PZC value of the shells provides important information for the characterization and potential applications of the shells. SEM images and EDS analyzes of the shells were made. According to the EDS results, calcium, carbon, and oxygen atoms belonging to the main structure of calcium carbonate (CaCO3) appeared in the highest proportions. FT-IR analysis was supported to the calcium carbonate (CaCO3) structure. XRD analyses were performed within the scope of the study, and it was determined that the shell structures mainly consist of a mixture of calcium carbonate and aragonite. In conclusion, this study on the chemical composition of M. galloprovincialis shells provides a detailed analysis of shell composition. The analyses conducted provide important information about the chemical composition, structural properties, and potential applications of the shells. This study contributes to research on the biological and chemical properties of marine organisms and is considered to form the basis for future studies.

Keywords: Mytilus galloprovincialis, Bivalve shells, Calcium carbonate, The zero charge points

How to Cite this Article?

APA 6th edition
Kizilkaya, B., Yildiz, H., Acarli, S. & Vural, P. (2024). Investigation of the Chemical Composition of the Shell Structure of Mytilus galloprovincialis Mussel From Kefken, Türkiye . Acta Natura et Scientia, 5(1), 57-68.

Kizilkaya, B., Yildiz, H., Acarli, S. and Vural, P. (2024). Investigation of the Chemical Composition of the Shell Structure of Mytilus galloprovincialis Mussel From Kefken, Türkiye . Acta Natura et Scientia, 5(1), pp. 57-68.

Chicago 16th edition
Kizilkaya, Bayram, Harun Yildiz, Sefa Acarli and Pervin Vural (2024). "Investigation of the Chemical Composition of the Shell Structure of Mytilus galloprovincialis Mussel From Kefken, Türkiye ". Acta Natura et Scientia 5 (1):57-68.

  1. Acarlı, S., Lok, A., Acarlı, D., & Kucukdermenci, A. (2018). Gamogenetic cycle, condition index and meat yield of the Noah’s Ark shell (Arca noae Linnaeus, 1758) from Gerence Bay, Aegean Sea Turkey. Ege Journal of Fisheries and Aquatic Sciences, 35, 141-149. [Google Scholar] [Crossref] 
  2. Acarli, S., Lök, A., Kirtik, A., Acarli, D., Serdar, S., Kucukdermenci, A., & Saltan, A.N. (2015). Seasonal variation in reproductive activity and biochemical composition of flat oyster (Ostrea edulis) in the Homa Lagoon, Izmir Bay, Turkey. Scientia Marina, 79(4), 487-495. [Google Scholar] [Crossref] 
  3. Acarli, S., Lok, A., Kücükdermenci, A., Yildiz, H., & Serdar, S. (2011). Comparative growth, survival and condition index of flat oyster, Ostrea edulis (Linnaeus 1758) in Mersin Bay, Aegean Sea, Turkey. Kafkas Universitesitesi Veterinerlik Fakültesi Dergisi, 17(2), 203-210. [Google Scholar]
  4. Acarlı, S., Vural, P., & Yıldız, H. (2023). An assessment of the cultivation potential and suitability for human consumption of Mediterranean mussels (Mytilus galloprovincialis Lamarck, 1819) from the Yalova coast of the Marmara Sea. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 9(1), 12-24. [Google Scholar] [Crossref] 
  5. Agbaje, O. B. A., Shir, I. B., Zax, D. B., Schmidt, A., & Jacob, D. E. (2018a). Biomacromolecules within bivalve shells: Is chitin abundant? Acta Biomaterialia, 80, 176–187. [Google Scholar] [Crossref] 
  6. Agbaje, O. B. A., Thomas, D., Dominguez, J. G., Mclnerney, B. V., Kosnik, M. A., & Jacob, D. E. (2018b). Biomacromolecules in bivalve shells with crossed lamellar architecture. Journal of Materials Science, 54(6), 4952-4969. [Google Scholar] [Crossref] 
  7. Agbaje, O. B. A., Wirth, R., Morales, L. F. G., Shirai, K., Kosnik, M. A., Watanabe, T., & Jacob, D. E. (2017). Architecture of crossed-lamellar bivalve shells: the southern giant clam (Tridacna derasa, Röding, 1798). Royal Society Open Science, 4(9), 170622. [Google Scholar] [Crossref] 
  8. Babić, B., Milonjić, S. K., Polovina, M., & Kaludierović, B. (1999). Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon, 37(3), 477-481. [Google Scholar] [Crossref] 
  9. Bogan, A. E. (2007). Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater. Hydrobiologia, 595(1), 139–147. [Google Scholar] [Crossref] 
  10. Carroll, M., & Romanek, C. S. (2008). Shell layer variation in trace element concentration for the freshwater bivalve Elliptio complanata. Geo-Marine Letters, 28(5-6), 369-381. [Google Scholar] [Crossref] 
  11. Chakraborty, A., Parveen, S., Chanda, D. K., & Aditya, G. (2020). An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. RSC Advances, 10(49), 29543-29554. [Google Scholar] [Crossref] 
  12. Fiol, N., & Villaescusa, I. (2008). Determination of sorbent point zero charge: Usefulness in sorption studies. Environmental Chemistry Letters, 7(1), 79-84. [Google Scholar] [Crossref] 
  13. Graf, D. (2013). Patterns of freshwater bivalve global diversity and the state of phylogenetic studies on the Unionoida, Sphaeriidae, and Cyrenidae. American Malacological Bulletin, 31(1), 135–153. [Google Scholar] [Crossref] 
  14. Hamester, M. R. R., Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Materials Research, 15(2), 204-208. [Google Scholar] [Crossref] 
  15. Hou, W., Yan-Lei, S., D, S., & Zhang, C. (2001). Studies on zero point of charge and permanent charge density of MG-FE hydrotalcite-like compounds. Langmuir, 17(6), 1885–1888. [Google Scholar] [Crossref] 
  16. Ituen, E. U. (2015). Mechanical and chemical properties of selected mullusc shells in Nigeria. International Journal of Agricultural Policy and Research, 3(1), 53-59. [Google Scholar] [Crossref] 
  17. Kosmulski, M. (2002). The significance of the difference in the point of zero charge between rutile and anatase. Advances in Colloid and Interface Science, 99(3), 255–264. [Google Scholar] [Crossref] 
  18. Lafuente, B., Downs, R. T., Yang, H., & Stone, N. (2015) The power of databases: the RRUFF project. In T. Armbruster & R. M. Danisi (Eds.), Highlights in mineralogical crystallography (pp 1-30). De Gruyter. [Google Scholar] [Crossref] 
  19. Li, L., Zhang, X., Yun, H., & Li, G. (2017). Complex hierarchical microstructures of Cambrian mollusk Pelagiella: Insight into early biomineralization and evolution. Scientific Reports, 7, 1935. [Google Scholar] [Crossref] 
  20. Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., & Alum, A. (2011). Comparison of different methods for the point of zero charge determination of NIO. Industrial & Engineering Chemistry Research, 50(17), 10017-10023. [Google Scholar] [Crossref] 
  21. Mititelu, M., Stanciu, G., Drăgănescu, D., Ioniță, A. C., Neacșu, S. M., Dinu, M., Stefan-van Staden, R.-I., & Moroșan, E. (2022). Mussel shells, a valuable calcium resource for the pharmaceutical industry. Marine Drugs, 20, 25. [Google Scholar] [Crossref] 
  22. Nakamura, A., De Almeida, A. C., Riera, H. E., De Araújo, J. L. F., Gouveia, V. J. P., De Carvalho, M. D., & Cardoso, A. V. (2014). Polymorphism of CaCO3 and microstructure of the shell of a Brazilian invasive mollusc (Limnoperna fortunei). Materials Research-ibero-american Journal of Materials, 17(suppl 1), 15–22. [Google Scholar] [Crossref] 
  23. Pokroy, B., Fieramosca, J. S., Von Dreele, R. B., Fitch, A. N., Caspi, E. N., & Zolotoyabko, E. (2007). Atomic structure of biogenic aragonite. Chemistry of Materials, 19(13), 3244-3251. [Google Scholar] [Crossref] 
  24. Qian, Y. (1999). Taxonomy and biostratigraphy of small shelly fossils in China. In Y. Qian (Ed.), Taxonomy and Biostratigraphy of Small Shelly Fossils in China (pp. 216-219). Science Press. [Google Scholar]
  25. Qian, Y., & Bengtson, S. (1989). Palaeontology and biostratigraphy of the early Cambrian Meishucunian Stage in Yunnan Province, South China. Universitetsforlaget. [Google Scholar] [Crossref] 
  26. Somasundaran, P., & Agar, G. (1967). The zero point of charge of calcite. Journal of Colloid and Interface Science, 24(4), 433-440. [Google Scholar] [Crossref] 
  27. Spann, N., Harper, E. M., & Aldridge, D. C. (2010). The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. The Science of Nature, 97(8), 743-751. [Google Scholar] [Crossref] 
  28. Sverjensky, D. A. (1994). Zero-point-of-charge prediction from crystal chemistry and solvation theory. Geochimica et Cosmochimica Acta, 58(14), 3123-3129. [Google Scholar] [Crossref] 
  29. USGS. (2001), U. S. USGS OFR01-041: X-Ray Diffraction Primer, U. S. Geological Survey Open-File Report 01-041, Retrieved on January 28, 2024 from [Google Scholar]
  30. Yildiz, H., & Berber, S. (2010). Depth and seasonal effects on the settlement density of Mytilus galloprovincialis L. 1819 in the Dardanelles. Journal of Animal and Veterinary Advances, 9, 756-759. [Google Scholar]
  31. Yıldız, H., Acarlı, S., Berber, S., Vural, P., & Gündüz, F. (2013). A preliminary study on Mediterranean Mussel (Mytilus galloprovincialis Lamarck, 1819) culture in integrated multitrofik aquaculture systems in Çanakkale Strait. Alınteri Journal of Agricultural Sciences, 25(2), 38-44. [Google Scholar]