Research article    |    Open Access
Acta Natura et Scientia 2025, Vol. 6(1) 1-11

Preliminary Ecological Risk Assessment of Toxic Elements in Fish Cage Culture Sites within the Interconnected Epe and Badagry Lagoons, Nigeria

Oluwadamilola Ruth Ajiboye, Aderonke Omolara Lawal-Are, Amii Isaac Obiakara-Amaechi, Rasheed Olatunji Moruf

pp. 1 - 11   |  DOI: https://doi.org/10.61326/actanatsci.v6i1.322

Publish Date: February 28, 2025  |   Single/Total View: 1/3   |   Single/Total Download: 1/3


Abstract

The interconnected Epe and Badagry Lagoons in Nigeria are vital ecosystems supporting fish cage culture, but they may be at risk of toxic element contamination, posing threats to aquatic life and human health. This study conducted a preliminary ecological risk evaluation, focusing on arsenic, boron, selenium, silicon, and sulfur concentrations in water, sediment, and Heteroclarias tissues using standard analytical methods. Contamination levels and ecological risks were assessed using contamination factor (CF), enrichment factor (EF), bioaccumulation factor (BAF), and the index of geo-accumulation (Igeo). Sediment consistently showed the highest concentrations of all analyzed elements, with arsenic levels in Badagry Lagoon (0.4426 ± 0.0731 mg kg⁻¹) exceeding those in water and fish tissues, and a sediment-dominant pattern was observed for boron, selenium, silicon, and sulfur. Arsenic bioaccumulation factors in Heteroclarias from Epe Lagoon were significantly high (62.29 ± 0.36 for water and 1.26 ± 0.73 for sediment), while EF values for arsenic were highest in Badagry Lagoon (29.80), and selenium showed the highest EF in Epe Lagoon (224.64). Despite negative Igeo values indicating no significant sediment contamination, elevated arsenic concentrations and bioaccumulation in fish tissues raise potential health concerns for aquatic life and human consumers, emphasizing the need for regular monitoring and management strategies to mitigate toxic element contamination in the Lagos Lagoon system.

Keywords: Aquatic ecosystems, Bioaccumulation, Cage culture, Contamination, Fish


How to Cite this Article?

APA 7th edition
Ajiboye, O.R., Lawal-Are, A.O., Obiakara-Amaechi, A.I., & Moruf, R.O. (2025). Preliminary Ecological Risk Assessment of Toxic Elements in Fish Cage Culture Sites within the Interconnected Epe and Badagry Lagoons, Nigeria. Acta Natura et Scientia, 6(1), 1-11. https://doi.org/10.61326/actanatsci.v6i1.322

Harvard
Ajiboye, O., Lawal-Are, A., Obiakara-Amaechi, A. and Moruf, R. (2025). Preliminary Ecological Risk Assessment of Toxic Elements in Fish Cage Culture Sites within the Interconnected Epe and Badagry Lagoons, Nigeria. Acta Natura et Scientia, 6(1), pp. 1-11.

Chicago 16th edition
Ajiboye, Oluwadamilola Ruth, Aderonke Omolara Lawal-Are, Amii Isaac Obiakara-Amaechi and Rasheed Olatunji Moruf (2025). "Preliminary Ecological Risk Assessment of Toxic Elements in Fish Cage Culture Sites within the Interconnected Epe and Badagry Lagoons, Nigeria". Acta Natura et Scientia 6 (1):1-11. https://doi.org/10.61326/actanatsci.v6i1.322

References
  1. Ahamad, M. I., Song, J., Sun, H., Wang, X., Mehmood, M. S., Sajid, M., & Khan, A. J. (2020). Contamination level, ecological risk, and source identification of heavy metals in the hyporheic zone of the Weihe River, China. International Journal of Environmental Research and Public Health, 17(3), 1070-1078. https://doi.org/10.3390/ijerph17031070 [Google Scholar] [Crossref] 
  2. Ajiboye, O. R., Lawal-Are, A. O., & Obiakara-Amaechi, A. O. (2024). Trace metal contaminant in two fish species from Epe Lagoon (Southwest Nigeria): Health risk assessment. Transylvanian Review of Systematical and Ecological Research, 26(3), 71-80. https://doi.org/10.2478/trser-2024-0018 [Google Scholar] [Crossref] 
  3. Audu, Y., Aliyu, A. D., & Dadi-Mamud, N. J. (2022). Evaluation of heavy metals contamination in the sediments of some selected water of south senatorial district of Niger State, Nigeria. Science World Journal, 17(4), 487-494. [Google Scholar]
  4. Dussubieux I., & Van Zelst I. (2004) LA-ICP-MS analysis of platinum group elements and other elements of interest in ancient gold. Applied Physics A, 79, 353–356. https://doi.org/10.1007/s00339-004-2532-2 [Google Scholar] [Crossref] 
  5. Gilli R., Karlen C., Weber M., Rüegg J., Barmettler K., Biester H., Boivin P., & Kretzschmar R. (2018). Speciation and mobility of mercury in soils contaminated by legacy emissions from a chemical factory in the Rhône valley in Canton of Valais. Switzerland. Soil System, 2(3), 44-53. https://doi.org/10.3390/soilsystems2030044 [Google Scholar] [Crossref] 
  6. Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14(8), 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8 [Google Scholar] [Crossref] 
  7. Hauser-Davis, R. A., & Wosnick, N. (2022). Climate change implications for metal and metalloid dynamics in aquatic ecosystems and its context within the decade of ocean sciences. Water, 14(15), 2415. https://doi.org/10.3390/w14152415 [Google Scholar] [Crossref] 
  8. Hussain, M. M., Bibi, I., Shahid, M., Shaheen, S. M., Shakoor, M. B., Bashir, S., Younas, F., Rinklebe, J., & Niazi, N. K. (2019). Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae. In A. C. Duarte & V. Reis (Eds.), Comprehensive Analytical Chemistry Handbook, Volume 85: Arsenic Speciation in Algae (pp. 15-51). Elsevier. https://doi.org/:10.1016/bs.coac.2019.03.007 [Google Scholar] [Crossref] 
  9. Kaleem, O., & Sabi, A. (2021). Overview of aquaculture systems in Egypt and Nigeria, prospects, potentials, and constraints. Aquaculture and Fisheries, 6(6), 535–547. https://doi.org/10.1016/j.aaf.2020.07.017 [Google Scholar] [Crossref] 
  10. Lawal-Are, A. O., Moruf, R. O., Sobara, U. J., & Salami, K. B. (2021). Relationship between mercury concentration in water, bottom sediment and two mollusc species (Crassostrea gasar and Tympanotonus fuscatus) from a Lagos creek in Nigeria. Journal of Bio-Science, 29(1), 143-151. https://doi.org/10.3329/jbs.v29i0.54830 [Google Scholar] [Crossref] 
  11. Moruf, R. O. (2019). Bio-ecology, immuno-histochemistry, and genetic heterogeneity of portunid species from coastal waters of Lagos State, Nigeria. [Ph.D. Thesis. University of Lagos]. [Google Scholar]
  12. Moruf, R. O. (2021). Metallic bioaccumulation in Sesarma huzardii (Decapoda: Sesarmidae) from two estuarine creeks under different anthropogenic influences. Polish Journal of Natural Science, 36(3), 271-282. [Google Scholar]
  13. Moruf, R. O. (2022). Seasonal heterogeneity and health risk assessment of metal contaminant in Callinectes amnicola from Epe Lagoon, Southwest, Nigeria. Journal Material and Environmental Science, 13(1), 29-41. [Google Scholar]
  14. Moruf, R. O., Abubakar, M. I., Obiakara-Amaechi, A. I., Sani, I. M., & Akpan, I. I. (2022). Metal content and oxidative stress enzymes in aquatic crab, Goniopsis cruentata (Latreille, 1802) from tropical creeks adjacent western axis of the Lagos Lagoon. Tropical Journal of Natural Product Research, 6(1), 161-166. https://doi.org/10.26538/tjnpr/v6i1.26 [Google Scholar] [Crossref] 
  15. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108-118. [Google Scholar]
  16. Mustapha, A. M., Ugya, A. Y., & Mustapha, Z. (2021). Assessment of heavy metal levels in fish tissues, water and sediment from Epe lagoon, Lagos, Nigeria. Science World Journal, 16(4), 464-469. [Google Scholar]
  17. Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551-563. https://doi.org/10.1038/s41586-021-03308-6 [Google Scholar] [Crossref] 
  18. Ndimele, P. E., & Kumolu-Johnson, C. A. (2012). Some aspect of the physico-chemistry and heavy metal contents of water, sediment and Cynothrissa mento (Regan, 1917) from Badagry Creek, Lagos, Nigeria. Trend in Applied Science Research, 7 (9), 724-736. [Google Scholar]
  19. Olopade O. A., Taiwo I. O., & Ogunbanwo A. E. (2015). Length-weight relationship and condition factor of Leuciscus niloticus (De Joahhis, 1853) from Epe Lagoon, Lagos, Nigeria. Ege Journal of Fisheries and Aquatic Sciences, 32(3), 165-168. https://doi.org/10.12714/egejfas.2015.32.3.07 [Google Scholar] [Crossref] 
  20. Orinda, M., Okuto, E., & Abwao, M. (2021). Cage fish culture in the Lake Victoria region: Adoption determinants, challenges and opportunities. International Journal of Fisheries and Aquaculture, 13(2), 45-55. https://doi.org/10.5897/IJFA2020.0798 [Google Scholar] [Crossref] 
  21. Pueyo M., Rauret G., Luck D., Yli-Halla M., Muntau H., Quevauviller P., & López-Sánchez F. J. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb e Zn in a freshwater sediment following a colaborativelly tested and optmised three-steps sequencial extraction procedure. Journal of Environmental Monitoring, 3, 243–250. https://doi.org/10.1039/b010235k [Google Scholar] [Crossref] 
  22. Rahim, H. U., Qaswar, M., Wang, M., Jing, X., & Cai, X. (2021). Environmental applications of reduced sulfur species and composites in transformation and detoxification of contaminants. Journal of Environmental Chemical Engineering, 9(6), 106696. https://doi.org/10.1016/j.jenvman.2024.122670 [Google Scholar] [Crossref] 
  23. Raj, D., & Maiti, S. K. (2020). Sources, bioaccumulation, health risks and remediation of potentially toxic metal (loid) s (As, Cd, Cr, Pb and Hg): An epitomised review. Environmental Monitoring and Assessment, 192(2), 108. https://doi.org/10.1007/s10661-019-8060-5 [Google Scholar] [Crossref] 
  24. Sarker, A., Kim, J. E., Islam, A. R. M. T., Bilal, M., Rakib, M. R. J., Nandi, R., Rahman, M. M., & Islam, T. (2022). Heavy metals contamination and associated health risks in food webs—a review focuses on food safety and environmental sustainability in Bangladesh. Environmental Science and Pollution Research, 29(3), 3230-3245. https://doi.org/10.1007/s11356-021-17153-7 [Google Scholar] [Crossref] 
  25. Sinex, S., & Helz, G. (1981). Regional geochemistry of trace elements in Chesapeake Bay sediments. Environmental Geology, (6), 315–323. https://doi.org/10.1007/BF02473521 [Google Scholar] [Crossref] 
  26. Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Letters in Applied NanoBioScience, 10(2), 2148-2166. https://doi.org/10.33263/LIANBS102.21482166 [Google Scholar] [Crossref] 
  27. Taiwo, I. O., Olopade, O. A., & Bamidele, N. A. (2019). Heavy metal concentration in eight fish species from Epe Lagoon (Nigeria). Transylvanian Review of Systematical and Ecological Research, 21(1), 69-82. [Google Scholar]
  28. Usese, A. I., Chukwu, L. O., Naidu, R., Islam, S., & Rahman, M. M. (2020). Arsenic fractionation in sediments and speciation in muscles of fish, Chrysichthys nigrodigitatus from a contaminated tropical Lagoon, Nigeria. Chemosphere, 256, 127134. https://doi.org/10.1016/j.chemosphere.2020.127134 [Google Scholar] [Crossref] 
  29. Usese, A. I., Elike, M. I., Moruf, R. O., & Chukwu, L. O. (2019). Levels of oxidative stress markers in the mangrove oyster, Crassostrea gasar from a coastal ecosystem in Southwest Nigeria. Journal of Research in Forestry, Wildlife and Environment, 11(1), 32-38. [Google Scholar]
  30. Usese, A. I., Lawal-Are, A. O., Moruf, R. O., & Chukwu, L. O. (2018). Biomarker responses to environmental stressors in the hairy mangrove crab, Sesarma huzardii (Graspidae) from a Tropical Lagoon Mudflat in Nigeria. Alexandria Journal of Veterinary Sciences, 57(1), 4-10. https://doi.org/10.5455/ajvs.291903 [Google Scholar] [Crossref] 
  31. Verma, N., Kanojia, N., Kalra, S., & Dua, K. (2023). Chemical speciation of chromium and arsenic and biogeochemical cycle in the aquatic system. In S. Madhav, V. B. Singh, M. Kumar & S. Singh (Eds.), Hydrogeochemistry of Aquatic Ecosystems (pp. 155-179). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119870562.ch7 [Google Scholar] [Crossref] 
  32. WHO. (2017). World Health Organization guidelines for drinking-water quality: First addendum to the fourth edition. World Health Organization. [Google Scholar]
  33. Zhang, W., Miao, A. J., Wang, N. X., Li, C., Sha, J., Jia, J., & Ok, Y. S. (2022). Arsenic bioaccumulation and biotransformation in aquatic organisms. Environment International, 163, 107221. https://doi.org/10.1016/j.envint.2022.107221 [Google Scholar] [Crossref] 
  34. [Google Scholar]