Research article    |    Open Access
Acta Natura et Scientia 2025, Vol. 6(2) 139-148

Comparison of the Fit of the Richards Model to Broiler Chicken Growth Data With Gompertz and Logistic Models

Sedat Tel, Nurinisa Esenbuğa

pp. 139 - 148   |  DOI: https://doi.org/10.61326/actanatsci.v6i2.387

Publish Date: December 11, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

This study comparatively evaluates three nonlinear regression models (Richards, Gompertz, and Logistic) commonly used to mathematically model the growth process of commercial broilers. The primary objective of the study was to determine the model that most accurately represents the growth curve by analyzing the fit of these models to live weight data. In the study, 360 Ross 308 hybrid male broiler chicks were monitored until 50 days of age, and weekly live weight measurements were taken. Parameter estimates for each model were evaluated based on statistical fit metrics, including root mean square error (RMSE), coefficient of determination (R2), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The results showed that the Richards model showed the highest fit across all criteria. The Gompertz model ranked second, and the Logistic model ranked third. However, all three models demonstrated high performance in explaining the growth process of broilers. These results highlight the importance of growth modeling as a key decision-support tool for determining optimal slaughter timing and feeding strategies, particularly in broiler production. The flexible structure of the Richards model makes it the most desirable option in terms of biological significance and statistical relevance.

Keywords: Broiler, Growth curve, Non-linear model, Richards model, Gompertz model, Logistic model


How to Cite this Article?

APA 7th edition
Tel, S., & Esenbuga, N. (2025). Comparison of the Fit of the Richards Model to Broiler Chicken Growth Data With Gompertz and Logistic Models. Acta Natura et Scientia, 6(2), 139-148. https://doi.org/10.61326/actanatsci.v6i2.387

Harvard
Tel, S. and Esenbuga, N. (2025). Comparison of the Fit of the Richards Model to Broiler Chicken Growth Data With Gompertz and Logistic Models. Acta Natura et Scientia, 6(2), pp. 139-148.

Chicago 16th edition
Tel, Sedat and Nurinisa Esenbuga (2025). "Comparison of the Fit of the Richards Model to Broiler Chicken Growth Data With Gompertz and Logistic Models". Acta Natura et Scientia 6 (2):139-148. https://doi.org/10.61326/actanatsci.v6i2.387

References
  1. Adamu, J., Shuaibu, A., & Raji, A. (2021). Growth characteristics of noiler chickens as determined by nonlinear algorithms. Nigerian Journal of Animal Production, 48(5), 12-19. https://doi.org/10.51791/njap.vi.4140 [Google Scholar] [Crossref] 
  2. Aggrey, S. (2002). Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science, 81(12), 1782-1788. https://doi.org/10.1093/ps/81.12.1782 [Google Scholar] [Crossref] 
  3. Akbaş, Y. (1995). Büyüme eğrisi modellerinin karşılaştırılması. Hayvansal Üretim, 36(1), 73-81. [Google Scholar]
  4. Akbaş, Y., Taşkın, T., & Demirören, E. (1999). Farklı modellerin kıvırcık ve dağlıç erkek kuzularının büyüme eğrilerine uyumunun karşılaştırılması [Comparison of several models to fit the growth curves of Kıvırcık and Dağlıç male lambs]. Turkish Journal of Veterinary and Animal Sciences, 23(Suppl 3), 537-544. [Google Scholar]
  5. Bilgin, Ö. C., & Esenbuğa, N. (2003). Doğrusal-olmayan büyüme modellerinde parametre tahmini [Parameter estimation in nonlinear growth models]. Hayvansal Üretim, 44(2), 81-90. [Google Scholar]
  6. Brown, J. E., Fitzhugh, Jr, H. A., & Cartwright, T. C. (1976). A comparison of nonlinear models for describing weight-age relationships in cattle. Journal of Animal Science, 42(4), 810-818. https://doi.org/10.2527/jas1976.424810x [Google Scholar] [Crossref] 
  7. Draper, N., & Smith, M. (1998). Applied regression analysis. 2nd edition. John Wiley & Sons Inc. [Google Scholar]
  8. Efe, E. (1990). Büyüme eğrileri. [PhD. Thesis. Çukurova University]. [Google Scholar]
  9. Ersöz, F., & Alpan, O. (1994). Doğrusal olmayan büyüme modellerinin incelenmesi ve parametre tahmini [Evaluation of the growth curve by the method of iterated least square]. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi, 34(3-4), 74-83. [Google Scholar]
  10. Falana, O., Durodola, O. I., Ilemobayo, J. A., Adu, O. E., Ajayi, A. O., Iledare, A. M., Uzoka, U. H., Awotunde, O. J., Hayford, d., Ipede, O., Osungbure, I. D., & Blessing, A. (2024). Non-linear regression curve fitting of time-dependent growth performance of Cobb500 broiler. International Journal of Recent Engineering Science, 11(4), 1-8. https://doi.org/10.14445/23497157/IJRES-V11I4P101 [Google Scholar] [Crossref] 
  11. Ghavi Hossein-Zadeh, N. (2025) Application of alternative nonlinear models to predict growth curve in partridges. PLoS ONE, 20(4), e0321680. https://doi.org/10.1371/journal.pone.0321680 [Google Scholar] [Crossref] 
  12. İzgi, V., Akkol, S., & Tekeli, A. (2020). Genel doğrusal ve çok seviyeli doğrusal büyüme modelleri kullanılarak etlik piliçlerde büyümenin değerlendirilmesi. [Evaluation of growth in broiler chicken using general linear and multi-level linear growth models]. Türkiye Tarımsal Araştırmalar Dergisi, 7(2), 163-171. https://doi.org/10.19159/tutad.692328 [Google Scholar] [Crossref] 
  13. Knížetová, H., Hyanek, J., Kníže, B., & Roubíček, J. (1991). Analysis of growth curves of fowl. I. Chickens. British Poultry Science, 32(5), 1027-1038. https://doi.org/10.1080/00071669108417427 [Google Scholar] [Crossref] 
  14. Kucukonder, H., Celebi Demirarslan, P., Alkan, S., & Bırgul, Ö. B. (2020). Curve fitting with nonlinear regression and grey prediction model of broiler growth in chickens. Pakistan Journal of Zoology, 52(1), 347-354. https://doi.org/10.17582/journal.pjz/2020.52.1.347.354 [Google Scholar] [Crossref] 
  15. Masoudi, A., & Azarfar, A. (2017). Comparison of nonlinear models describing growth curves of broiler chickens fed on different levels of corn bran. International Journal of Avian & Wildlife Biology, 2(1), 334-339. https://doi.org/10.15406/ijawb.2017.02.00012 [Google Scholar] [Crossref] 
  16. Michalczuk, M., Damaziak, K., & Goryl, A. (2016). Sigmoid models for the growth curves in medium-growing meat type chickens, raised under semi-confined conditions. Annals of Animal Science, 16(1), 65-77. https://doi.org/10.1515/aoas-2015-0061 [Google Scholar] [Crossref] 
  17. Şahin, A., Ulutaş, Z., Karadavut, U., Yıldırım, A., & Arslan, S. (2014). Anadolu mandası malaklarında büyüme eğrisinin çeşitli doğrusal olmayan modeller kullanılarak karşılaştırılması [Comparison of growth curve using some nonlinear models in Anatolian buffaloe calves]. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 20(3), 357-362. https://doi.org/10.9775/kvfd.2013.10171 [Google Scholar] [Crossref] 
  18. Şireli, H. & Ertuğrul, M. (2004). Dorset Down x Akkaraman (GD1), Akkaraman ve Akkaraman x GD1 genotipli kuzularda büyüme eğrilerinin logistic model ile tahmini [The growth curves estimates of Akkaraman, Dorset Down x Akkaraman (BD1) and Akkaraman x BD1 lambs using logistic model]. Tarım Bilimleri Dergisi, 10(4), 375-380. [Google Scholar]
  19. Söğüt, B., Demirulus, H., Arslan, S., & Güler, C. (2005). Japon bıldırcınlarında (Coturnix coturnix japonica) farklı çıkış ağırlıklarının tek ve çok aşamalı büyüme eğrileri ile incelenmesi. An investigation on different hatching weight of Japanese quails (Coturnix coturnix japonica) with single and multiple step growth curve. GAP IV. Tarım Kongresi, Türkiye. ss. 1298-1303. [Google Scholar]
  20. Topal, M., & Bölükbaşı, Ş. (2008). Comparison of nonlinear growth curve models in broiler chickens. Journal of Applied Animal Research, 34(2), 149-152. https://doi.org/10.1080/09712119.2008.9706960 [Google Scholar] [Crossref] 
  21. Xie, W. Y., Pan, N. X., Zeng, H. R., Yan, H. C., Wang, X. Q., & Gao, C. Q. (2020). Comparison of nonlinear models to describe the feather growth and development curve in yellow-feathered chickens. Animal, 14(5), 1005-1013. https://doi.org/10.1017/S1751731119003082 [Google Scholar] [Crossref] 
  22. Yakupoglu, C., & Atil, H. (2001). Comparison of growth curve models on broilers II. comparison of models. Journal of Biological Sciences, 1(7), 682-684. https://doi.org/10.3923/jbs.2001.682.684 [Google Scholar] [Crossref]