- Alasbeb, S., Banat, F., & Mobai, F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere, 39(12), 2087-2096. https://doi.org/10.1016/S0045-6535(99)00098-3 [Google Scholar] [Crossref]
- Baccar, R., Bouzid, J., Feki, M., & Montiel, A. (2009). Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. Journal of Hazardous Materials, 162(2-3), 1522–1529. https://doi.org/10.1016/j.jhazmat.2008.06.041 [Google Scholar] [Crossref]
- Bailey, S., Olin, T. R., & Dean, M. A. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479. https://doi.org/10.1016/S0043-1354(98)00475-8 [Google Scholar] [Crossref]
- Banat, F., Asheh, S. A., & Mohai, F. (2000). Batch zinc removal from aqueous solution using dried animal bones. Separation and Purification Technology, 21(1-2), 155-164. https://doi.org/ 10.1016/S1383-5866(00)00199-4 [Google Scholar] [Crossref]
- Chojnacka, K. (2005). Equilibrium and kinetic modelling of chromium (III) sorption by animal bones. Chemosphere, 59(3), 315–320. https://doi.org/10.1016/j.chemosphere.2004.10.052 [Google Scholar] [Crossref]
- Corami, A., D’Acapito, F., Mignardi, S., & Ferini, V. (2008). Removal of Cu from aqueous solutions by synthetic hydroxyapatite: EXAFS investigation. Materials Science and Engineering B, 149(2), 209–213. https://doi.org/ 10.1016/j.mseb.2007.11.006 [Google Scholar] [Crossref]
- Dimovic, S., Smiciklas, I., Plecas, I., Antonovic, D., & Mitric, M. (2009). Comparative study of differently treated animal bones for Co2+ removal. Journal of Hazardous Materials, 164(1), 279–287. https://doi.org/10.1016/ j.jhazmat.2008.08.013 [Google Scholar] [Crossref]
- Donat, R., Akdogan, A., Erdem, E., & Cetisli, H. (2005). Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science, 286(1), 43–52. https://doi.org/10.1016/j.jcis. 2005.01.045 [Google Scholar] [Crossref]
- Janga, S. H., Jeonga, Y. G., Mina, B. G., Lyoob, W. S., & Leea, S. C. (2008). Preparation and lead ion removal property of hydroxyapatite/ polyacrylamide composite hydrogels. Journal of Hazardous Materials, 159(2-3), 294–299. https://doi.org/10.1016/j.jhazmat.2008.02.018 [Google Scholar] [Crossref]
- Kaushal, M., & Tiwari, A. (2010). Removal of rhodamine-B from aqueous solution by adsorption onto crosslinked alginate beads. Journal of Dispersion Science and Technology, 31(4), 438–441. https://doi.org/10.1080/ 01932690903210135 [Google Scholar] [Crossref]
- Kizilkaya, B., Tekinay, A. A., & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination, 264(1-2), 37-47. https://doi.org/ 10.1016/j.desal.2010.06. 076 [Google Scholar] [Crossref]
- Kizilkaya, B., Ucyol, N., & Tekinay, A. A. (2016). Surface modification of biogenic hydroxyapatite particles with 2-thiophenecarboxaldehyde. Environmental Science: An Indian Journal, 12(7), 1-10. [Google Scholar]
- Mahmoodi, N. M., Salehi, R., & Arami, M. (2011). Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination, 272(1-3), 187-195. https://doi.org/10.1016/j.desal.2011. 01.023 [Google Scholar] [Crossref]
- Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of copper (II) onto different adsorbents. Journal of Dispersion Science and Technology, 31(7), 918–930. https://doi.org/10.1080/01932690903224003 [Google Scholar] [Crossref]
- Smiciklas, I., Dimovic, S., Plecas, I. & Mitric, M. (2006). Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research, 40(12), 2267–2274. https://doi.org/10.1016/j.watres.2006.04. 031 [Google Scholar] [Crossref]
- Tan, E., Kizilkaya, B., Ucyol, N., Ormanci, H. B., & Oral, A. (2014). Surface modification with P-aminohippuric acid on biogenic apatite (fish bones) particles. Marine Science and Technology Bulletin, 3(2), 45-50. [Google Scholar]
- Zhu, R., Yu, R., Yao, J., Mao, D., Xing, C. & Wanga, D. (2008). Removal of Cd2+ from aqueous solutions by hydroxyapatite. Catalysis Today, 139(1-2), 94–99. https://doi.org/10.1016/ j.cattod.2008. 08.011 [Google Scholar] [Crossref]
|