Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2021, Vol. 2(2) 101-108

Effects of Temperature and Nitrogen Concentration on Growth and Lipid Accumulation of the Green Algae Chlorella vulgaris for Biodiesel

Şafak Seyhaneyıldız Can, Edis Koru, Semra Cirik, Gamze Turan, Hatice Tekoğul & Tuğba Subakan

pp. 101 - 108   |  DOI:   |  Manu. Number: MANU-2108-12-0005.R1

Published online: September 21, 2021  |   Number of Views: 119  |  Number of Download: 715


This study investigated the effect of different temperatures and different nitrogen concentrations on the lipid content and biomass of Chlorella microalgae. In this study, algae were cultured in five media with different amounts NaNO_{3} as 3, 1.5, 0.80, 0.40 g/L, and three temperatures (10, 20, 30 °C). The results of the experiments showed that the optimal temperature and nitrogen concentration for the biomass increase in Chlorella vulgaris are 30°C and 3 g/L, respectively. It was observed that biomass decreased and lipid amount increased due to the decrease in nitrogen concentration. The high lipid amount of 20.80% dry weight (DW) was obtained from the algae produced at 30°C in the free-nitrate medium. The contribution of temperature change to lipid production was not as effective as nitrogen deficiency in the study. According to the fatty acid analysis results made by GC-FID, C. vulgaris seems suitable for biodiesel production because it contains medium-length (C16-C18) fatty acid chains.

Keywords: Chlorella vulgaris, Nitrogen starvation, Temperature, Lipids biodiesel

How to Cite this Article?

APA 6th edition
Can, S.S., Koru, E., Cirik, S., Turan, G., Tekogul, H. & Subakan, T. (2021). Effects of Temperature and Nitrogen Concentration on Growth and Lipid Accumulation of the Green Algae Chlorella vulgaris for Biodiesel . Acta Natura et Scientia, 2(2), 101-108. doi: 10.29329/actanatsci.2021.350.03

Can, S., Koru, E., Cirik, S., Turan, G., Tekogul, H. and Subakan, T. (2021). Effects of Temperature and Nitrogen Concentration on Growth and Lipid Accumulation of the Green Algae Chlorella vulgaris for Biodiesel . Acta Natura et Scientia, 2(2), pp. 101-108.

Chicago 16th edition
Can, Safak Seyhaneyildiz, Edis Koru, Semra Cirik, Gamze Turan, Hatice Tekogul and Tugba Subakan (2021). "Effects of Temperature and Nitrogen Concentration on Growth and Lipid Accumulation of the Green Algae Chlorella vulgaris for Biodiesel ". Acta Natura et Scientia 2 (2):101-108. doi:10.29329/actanatsci.2021.350.03.

  1. Abd El-Baky, H. H., El Baz, F. K., & El-Baroty, G. S. (2004). Production of lipids rich in omega 3 fatty acids from the halotolerant alga Dunaliella salina. Biotechnology, 3(1), 102-108. [Google Scholar] [Crossref] 
  2. Can, Ş. S., Demir, V., & Can, E. (2015). Evaluating the dilution of municipal wastewater on biomass increase, lipid production and nutrient removal by the blue-green algae Spirulina platensis (Geitler). Fresenius Environmental Bulletin, 24(3), 904-909. [Google Scholar]
  3. Chuck, C. J., Bannister, C. D., Hawley, J. G., Davidson, M. G., La Bruna, I., & Paine, A. (2009). Predictive model to assess the molecular structure of biodiesel fuel. Energy & Fuels, 23(4), 2290-2294. [Google Scholar] [Crossref] 
  4. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151. [Google Scholar] [Crossref] 
  5. Deng, X., Li, Y., & Fei, X. (2009). Microalgae: A promising feedstock for biodiesel. African Journal of Microbiology Research, 3(13), 1008-1014. [Google Scholar]
  6. Dong, H. P., Williams, E., Wang, D. Z., Xie, Z. X., Hsia, R. C., Jenck, A., Halden, R., Li, J., Chen, F., & Place, A. R. (2013). Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiology, 162(2), 1110-1126. [Google Scholar] [Crossref] 
  7. Ekin I. (2019). Quality and composition of lipids used in biodiesel production and methods of transesterification: A review. International Journal of Chemistry and Technology, 3(2), 77-91. [Google Scholar] [Crossref] 
  8. Griffiths, M. J., & Harrison, S. T. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493-507. [Google Scholar] [Crossref] 
  9. Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith, & M. H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 29-60). Springer. [Google Scholar] [Crossref] 
  10. Hsieh, C. H., & Wu, W. T. (2009). Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology, 100(17), 3921-3926. [Google Scholar] [Crossref] 
  11. Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27(8), 631-635. [Google Scholar] [Crossref] 
  12. Ip, P. F., & Chen, F. (2005). Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochemistry, 40(11), 3491-3496. [Google Scholar] [Crossref] 
  13. Lee, S. J., Yoon, B. D., & Oh, H. M. (1998). Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 12(7), 553-556. [Google Scholar] [Crossref] 
  14. Li, Q., Du, W., & Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5), 749-756. [Google Scholar] [Crossref] 
  15. Liew, W. H., Hassim, M. H., & Ng, D. K. (2014). Review of evolution, technology and sustainability assessments of biofuel production. Journal of Cleaner Production, 71, 11-29. [Google Scholar] [Crossref] 
  16. Liu, Z. Y., Wang, G. C., & Zhou, B. C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11), 4717-4722. [Google Scholar] [Crossref] 
  17. Lombardi, A. T., & Wangersky, P. J. (1991). Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Marine Ecology Progress Series, 77, 39-47. [Google Scholar] [Crossref] 
  18. Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281-291. [Google Scholar] [Crossref] 
  19. Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17(5), 477-489. [Google Scholar] [Crossref] 
  20. Nigam, S., Rai, M. P., & Sharma, R. (2011). Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. American Journal of Biochemistry and Biotechnology, 7(3), 124-129. [Google Scholar]
  21. Olofsson, M., Lamela, T., Nilsson, E., Bergé, J. P., Del Pino, V., Uronen, P., & Legrand, C. (2014). Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Marine Drugs, 12(4), 1891-1910. [Google Scholar] [Crossref] 
  22. Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied Microbiology and Biotechnology, 90(4), 1429-1441. [Google Scholar] [Crossref] 
  23. Park, S. J., Choi, Y. E., Kim, E. J., Park, W. K., Kim, C. W., & Yang, J. W. (2012). Serial optimization of biomass production using microalga Nannochloris oculata and corresponding lipid biosynthesis. Bioprocess and Biosystems Engineering, 35(1), 3-9. [Google Scholar] [Crossref] 
  24. Pinto, E., Sigaud‐kutner, T. C. S., Leitão, M. A., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal–induced oxidative stress in algae. Journal of Phycology, 39(6), 1008-1018. [Google Scholar] [Crossref] 
  25. Renaud, S. M., Thinh, L. V., Lambrinidis, G., & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1-4), 195-214. [Google Scholar] [Crossref] 
  26. Roleda, M. Y., Slocombe, S. P., Leakey, R. J., Day, J. G., Bell, E. M., & Stanley, M. S. (2013). Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology, 129, 439-449. [Google Scholar] [Crossref] 
  27. Sajjadi, B., Chen, W. Y., Raman, A. A. A., & Ibrahim, S. (2018). Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renewable and Sustainable Energy Reviews, 97, 200-232. [Google Scholar] [Crossref] 
  28. Sandnes, J. M., Källqvist, T., Wenner, D., & Gislerød, H. R. (2005). Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. Journal of Applied Phycology, 17(6), 515-525. [Google Scholar] [Crossref] 
  29. Sissener, N. H., Ørnsrud, R., Sanden, M., Frøyland, L., Remø, S., & Lundebye, A. K. (2018). Erucic acid (22: 1n-9) in fish feed, farmed, and wild fish and seafood products. Nutrients, 10(10), 1443. [Google Scholar] [Crossref] 
  30. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96. [Google Scholar] [Crossref] 
  31. Su, C. H., Chien, L. J., Gomes, J., Lin, Y. S., Yu, Y. K., Liou, J. S., & Syu, R. J. (2011). Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology, 23(5), 903-908. [Google Scholar] [Crossref] 
  32. Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D., & Cao, Y. (2014). Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology, 155, 204-212. [Google Scholar] [Crossref] 
  33. Taoka, Y., Nagano, N., Okita, Y., Izumida, H., Sugimoto, S., & Hayashi, M. (2009). Influences of culture temperature on the growth, lipid content and fatty acid composition of Aurantiochytrium sp. strain mh0186. Marine Biotechnology, 11(3), 368-374. [Google Scholar] [Crossref] 
  34. Van Wagenen, J., Miller, T. W., Hobbs, S., Hook, P., Crowe, B., & Huesemann, M. (2012). Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies, 5(3), 731-740. [Google Scholar] [Crossref] 
  35. Vasudevan, P. T., & Briggs, M. (2008). Biodiesel production—current state of the art and challenges. Journal of Industrial Microbiology and Biotechnology, 35(5), 421. [Google Scholar] [Crossref] 
  36. Widjaja, A., Chien, C. C., & Ju, Y. H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13-20. [Google Scholar] [Crossref] 
  37. Xin, L., Hong-Ying, H., Ke, G., & Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494-5500. [Google Scholar] [Crossref] 
  38. Yeh, K. L., & Chang, J. S. (2011). Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP‐31: Implications for biofuels. Biotechnology Journal, 6(11), 1358-1366. [Google Scholar] [Crossref]