Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2022, Vol. 3(2) 93-107

Characterization of Genetic Diversity Among Cucumis Accessions Based on Morphological and Phytochemical Characters

Elyas Aryaki̇a & Mohamad Reza Naghavi̇

pp. 93 - 107   |  DOI:   |  Manu. Number: MANU-2203-28-0004.R1

Published online: July 28, 2022  |   Number of Views: 67  |  Number of Download: 449


The genus Cucumis L. of the Cucurbitaceae family is widely cultivated all over the world. Despite wide distribution and consumption, there is little information for the assessment of genetic diversity among Iranian Cucumis species. In this study, genetic diversity among 21 accessions of Iranian Cucumis species (C. sativus and C. melo) was assessed using 20 morphological characters of fruit and leaf and 4 phytochemical characters. High phytochemical and morphological diversity at intra- and interspecific levels were revealed among Cucumis species, which reflects the industrial potential of Iranian accessions for breeding and commercial usage. The grouping pattern of genetic diversity was constructed using the UPGMA dendrogram. The results of the grouping pattern revealed high efficiency of morphological and phytochemical characteristics for uncovering the genetic diversity of Cucumis accessions. Moreover, using morphological characters, cucumbers were separated according to their ecological zones. Considerable amounts of phytochemical properties were revealed among Iranian Cucumis accessions, which were comparable to those reported in other studies. Furthermore, unlike Total phenol content and total flavonoid content, melons showed more total sugar and DPPH radical scavenging activity than cucumbers. These results could be important for Cucumis gene bank management, agriculture, and breeding programs.

Keywords: Cucumis, Genetic diversity, Morphology, DPPH

How to Cite this Article?

APA 6th edition
Aryaki̇a, E. & Naghavi̇, M.R. (2022). Characterization of Genetic Diversity Among Cucumis Accessions Based on Morphological and Phytochemical Characters . Acta Natura et Scientia, 3(2), 93-107. doi: 10.29329/actanatsci.2022.352.02

Aryaki̇a, E. and Naghavi̇, M. (2022). Characterization of Genetic Diversity Among Cucumis Accessions Based on Morphological and Phytochemical Characters . Acta Natura et Scientia, 3(2), pp. 93-107.

Chicago 16th edition
Aryaki̇a, Elyas and Mohamad Reza Naghavi̇ (2022). "Characterization of Genetic Diversity Among Cucumis Accessions Based on Morphological and Phytochemical Characters ". Acta Natura et Scientia 3 (2):93-107. doi:10.29329/actanatsci.2022.352.02.

  1. Arrieta-Espinoza, G., Sanchez, E., Vargas, S., Lobo, J., Quesada, T., & Espinoza, A. M. (2005). The weedy rice complex in Costa Rica. I. Morphological study of relationships between commercial rice varieties, wild Oryza relatives and weedy types. Genetic Resources and Crop Evolution, 52, 575–587. [Google Scholar] [Crossref] 
  2. Aryakia, E. (2020). Study on anti-acetylcholinesterase, anti-tyrosinase, and antioxidant activities, and total phenolic content of nine Apiaceae species. Iranian Journal of Medicinal and Aromatic Plants Research, 36, 560-571. [Google Scholar]
  3. Aryakia, E., Karimi, H. R., Naghavi, M. R., Yazdanfar, N., & Fazeli, S. A. S. (2018). Evaluating essential oil composition of four Allium species (Subgen. & Sect. Allium). Iranian Journal of Field Crop Science, 49(1), 115-123. [Google Scholar]
  4. Aryakia, E., Karimi, H. R., Naghavi, M. R., & Fazeli, S. A. S. (2016). Morphological characterization of intra-and interspecific diversity in some Iranian wild Allium species. Euphytica, 211(2), 185-200. [Google Scholar] [Crossref] 
  5. Aryakia, E., Naghavi, M. R., Farahmand, Z., & Shahzadeh Fazeli, S. A. H. (2015). Evaluating allelopathic effects of some plant species in tissue culture media as an accurate method for selection of tolerant plant and screening of bioherbicides. Journal of Agricultural Science and Technology, 17(4), 1011–1023. [Google Scholar]
  6. Bahramikia, S., Ardestani, A., & Yazdanparast, R. (2009). Protective effects of four Iranian medicinal plants against free radical-mediated protein oxidation. Food Chemistry, 115(1), 37–42. [Google Scholar] [Crossref] 
  7. Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191–203. [Google Scholar] [Crossref] 
  8. Bernhardt, C. E., Mitchell, R. J., & Michaelsy, H. J. (2008). Effects of population size and density on pollinator visitation, pollinator behavior, and pollen tube abundance in Lupinus perennis. International Journal of Plant Sciences, 169(7), 944–953. [Google Scholar] [Crossref] 
  9. Chen, J. F., & Zhou, X. H. (2011). Cucumis. In C. Kole (ed.), Wild Crop Relatives: Genomic and Breeding Resources (pp. 67-90). Springer. [Google Scholar]
  10. Chen, J. F., Staub, J. E., Tashiro, Y., Isshiki, S., & Miyazaki, S. (1997). Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica, 96, 413–419. [Google Scholar] [Crossref] 
  11. Chen, S., Shen, X., Cheng, S., Li, P., Du, J., Chang, Y., & Meng, H. (2013). Evaluation of garlic cultivars for polyphenolic content and antioxidant properties. PLoS ONE, 8(11), e79730. [Google Scholar] [Crossref] 
  12. Chikh-Rouhou, H., Gómez-Guillamón, M. L., González, V., Sta-Baba, R., & Garcés-Claver, A. (2021a). Cucumis melo L. germplasm in Tunisia: Unexploited sources of resistance to fusarium wilt. Horticulturae, 7(8), 208. [Google Scholar] [Crossref] 
  13. Chikh-Rouhou, H., Mezghani, N., Mnasri, S., Mezghani, N., & Garcés-Claver, A. (2021b). Assessing the genetic diversity and population structure of a Tunisian melon (Cucumis melo L.) collection using phenotypic traits and SSR molecular markers. Agronomy, 11(6), 1121. [Google Scholar] [Crossref] 
  14. Chikh-Rouhou, H., Tlili, I., Ilahy, R., R’him, T., & Sta-Baba, R. (2021c). Fruit quality assessment and characterization of melon genotypes. International Journal of Vegetable Science, 27(1), 3-19. [Google Scholar] [Crossref] 
  15. Cui, M., Yang, Y., Cheng, Z., & Meng, H. (2020). Dynamic changes of fruit shape traits and its correlation to the morphology of other organs in cucumber. Agronomy, 10(8), 1111. [Google Scholar] [Crossref] 
  16. Davis, S. L. (2001). Phenotypic and genetic correlations among floral traits in two species of Thalictrum. Journal of Heredity, 94(4), 361–366. [Google Scholar] [Crossref] 
  17. De Souza, E. H., De Carvalho Costa, M. A. P., Souza, F. V. D., De Oliveira, S. S., & Dos Santos-Serejo, J. A. (2012). Genetic variability of banana with ornamental potential. Euphytica, 184(3), 355–367. [Google Scholar] [Crossref] 
  18. Deakin, H. R., Bohn, G. W., & Whitaker, T. W. (1971). Interspecific hybridization in Cucumis. Economic Botany, 25, 195–211. [Google Scholar]
  19. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. [Google Scholar] [Crossref] 
  20. Elbekkay, M., Hamza, H., Haddad, M., Ferchichi, A., & Kik, C. (2008). Genetic erosion in melon (Cucumis melo): A case study from Tunisia. Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, France. pp. 295–300. [Google Scholar]
  21. Espírito-Santo, M. M., Neves, F. S., Fernandes, G. W., & Silva, J. O. (2012). Plant phenology and absence of sex-biased gall attack on three species of Baccharis. PLoS ONE, 7(10), e46896. [Google Scholar] [Crossref] 
  22. FAO. (2012). FAOSTAT agricultural database. [Google Scholar]
  23. Ghafoori, H., Sariri, R., Naghavi, M. R., Aryakia, E., Dolatyari, A., Fazeli, S. S., Ramazani, H., & Farahmand, Z. (2013). Analysis of artemisinin isolated from Artemisia annua L. by TLC and HPLC. Journal of Liquid Chromatography & Related Technologies, 36(9), 1198-1206. [Google Scholar] [Crossref] 
  24. Grandillo, S., Ku, H. M., & Tanksley, S. D. (1996). Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Molecular Breeding, 2(3), 25l-260. [Google Scholar] [Crossref] 
  25. Hao, B., Li, W., Linchun, M., Li, Y., Rui, Z., Mingxia, T., & Weikai, B. A. (2006). Study of conservation genetics in Cupressus chengiana, an endangered endemic of China, using ISSR markers. Biochemical Genetics, 44(1-2), 29-43. [Google Scholar] [Crossref] 
  26. Herrera, C. M. (2002). Correlated evolution of fruit and leaf size in bird‐dispersed plants: Species‐level variance in fruit traits explained a bit further? Oikos, 97(3), 426-432. [Google Scholar]
  27. Hikosaka, S., & Sugiyama, N. (2004). Characteristics of flower and fruit development of multi-pistillate type cucumbers. The Journal of Horticultural Science and Biotechnology, 79(2), 219-222. [Google Scholar] [Crossref] 
  28. Hosu, A., Cristea, V. M., & Cimpoiu, C. (2014). Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chemistry, 150, 113–118. [Google Scholar] [Crossref] 
  29. Humphreys, M. O. (2003). Utilization of plant genetic resources in breeding for sustainability. Plant Genetic Resources: Characterisation and Utilisation, 1(1), 11–18. [Google Scholar] [Crossref] 
  30. Ismail, H. I., Chan, K. W., Mariod, A. A., & Ismail, M. (2010). Phenolic content and antioxidant activity of cantaloupe (Cucumis melo) methanolic extracts. Food Chemistry, 119(2), 643–647. [Google Scholar] [Crossref] 
  31. Jump, A. S., Marchant, R., & Penuelas, J. (2008). Environmental change and the option value of genetic diversity. Trends in Plant Science, 14(1), 51–58. [Google Scholar] [Crossref] 
  32. Karakurt, Y., Güvercin, D., Önder, S., & Işler, Ö. (2020). Assessment of genetic diversity in cucumber (Cucumis sativus L.) genotypes using morphological characters and AFLP analysis. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(3), 577-585. [Google Scholar] [Crossref] 
  33. Kashyap, S., Sahu, C. K., Verma, R. K., & Chaudhary, L. B. (2021). Taxonomic application of macro and micro morphological characters of seeds in Astragalus L. (Galegeae, Fabaceae) in India. Phytotaxa, 502(2), 191-207. [Google Scholar] [Crossref] 
  34. Kirkbride, J. H. (1993). Biosystematic monograph of the genus Cucumis (Cucurbitaceae): Botanical identification of cucumbers and melons. Parkway Publishers, Inc. [Google Scholar]
  35. Kresovich, S., & McFerson, J. R. (1992). Assessment and management of plant genetic diversity: Consideration of intra- and interspecific variation. Field Crops Research, 29(3), 185-204. [Google Scholar] [Crossref] 
  36. Liu, J., Qu, J., Hu, K., Zhang, L., Li, J., Wu, B., Luo, C., Wei, A., Han, Y., & Cui, X. (2015). Development of genome-wide simple sequence repeat fingerprints and highly polymorphic markers in cucumbers based on next‐generation sequence data. Plant Breeding, 134(5), 605-611. [Google Scholar] [Crossref] 
  37. Maietti, A., Tedeschi, P., Stagno, C., Bordiga, M., Travaglia, F., Locatelli, M., Arlorio, M., & Brandolini, V. (2012). Analytical traceability of melon (Cucumis melo var reticulatus): Proximate composition, bioactive compounds, and antioxidant capacity in relation to cultivar, plant physiology state, and seasonal variability. Journal of Food Science, 77(6), C646-C652. [Google Scholar] [Crossref] 
  38. Manchali, S., Chidambara Murthy, K. N., & Patil, B. S. (2021). Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants, 10(9), 1755. [Google Scholar] [Crossref] 
  39. Mangmang, J. S., Deaker, R., & Rogers, G. (2016). Germination characteristics of cucumber influenced by plant growth–promoting rhizobacteria. International Journal of Vegetable Science, 22(1), 66-75. [Google Scholar] [Crossref] 
  40. Maskato, Y., Talal, S., Keasar, T., & Gefen, E. (2014). Red foliage color reliably indicates low host quality and increased metabolic load for development of an herbivorous insect. Arthropod-Plant Interactions, 8, 285-292. [Google Scholar] [Crossref] 
  41. Naghavi, M. R., Aryakia, E., Hadi, S., Ghafoori, H., Mousavi, H., Ramazani, H., Feyzbakhsh, M., Ajani, Y., Farahmand, Z., Poorhosseini, L., & Shahzadeh Fazeli, S. A. H. (2019). Characterization of morphological, phytochemical and molecular diversity of Artemisia annua accessions in Hyrcanian area of Iran. Journal of Agricultural Science and Technology, 21(5), 1265-1276. [Google Scholar]
  42. Nijveldt, R. J., van Nood, E., Van Hoorn, D. E. C., Boelens, P. G., Van Norren, K., & Van Leeuwen, P. A. M. (2001). Flavonoids: A review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, 74(4), 418–425. [Google Scholar] [Crossref] 
  43. Pandey, A., Ranjan, P., Ahlawat, S. P., Bhardwaj, R., Dhariwal, O. P., Singh, P. K., Malav, P. K., Harish, G. D., Prabhu, P., & Agrawal, A. (2021). Studies on fruit morphology, nutritional and floral diversity in less-known melons (Cucumis melo L.) of India. Genetic Resources and Crop Evolution, 68(4), 1453-1470. [Google Scholar] [Crossref] 
  44. Parvathaneni, R. K., Natesan, S., Devaraj, A. A., Muthuraja, R., Venkatachalam, R., Subramani, A. P., & Laxmanan, P. (2011). Fingerprinting in cucumber and melon (Cucumis spp.) Genotypes using morphological and ISSR markers. Journal of Crop Science and Biotechnology, 14, 39-43. [Google Scholar] [Crossref] 
  45. Pierce, L. K., & Wehner, T. C. (1990). Review of genes and linkage groups in cucumber. HortScience, 25(6), 605-615. [Google Scholar]
  46. Raghami, M., López-Sesé, A. I., Hasandokht, M. R., Zamani, Z., Moghadam, M. R. F., & Kashi, A. (2014). Genetic diversity among melon accessions from Iran and their relationships with melon germplasm of diverse origins using microsatellite markers. Plant Systematics and Evolution, 300, 139-151. [Google Scholar] [Crossref] 
  47. Rolnik, A., & Olas, B. (2020). Vegetables from the Cucurbitaceae family and their products: Positive effect on human health. Nutrition, 78, 110788. [Google Scholar] [Crossref] 
  48. Schemske, D. W. (1980). Evolution of floral display in the orchid Brassavola nodosa. Evolution, 34(3), 489-493. [Google Scholar] [Crossref] 
  49. Shahrivari, S., Alizadeh, S., Ghassemi-Golezani, K., & Aryakia, E. (2022). A comprehensive study on essential oil compositions, antioxidant, anticholinesterase and antityrosinase activities of three Iranian Artemisia species. Scientific Reports, 12, 1-12. [Google Scholar] [Crossref] 
  50. Sheikhi, A., Arab, M. M., Brown, P. J., Ferguson, L., & Akbari, M. (2019). Pistachio (Pistacia spp.) breeding. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in plant breeding strategies: Nut and beverage crops (pp. 353-400). Springer, Cham. [Google Scholar] [Crossref] 
  51. Solankey, S. S., Singh, P. K., & Singh, R. K. (2015). Genetic diversity and interrelationship of qualitative and quantitative traits in sweet potato. International Journal of Vegetable Science, 21(3), 236-248. [Google Scholar] [Crossref] 
  52. Spanos, G. A., & Wrolstad, R. E. (1990). Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. Journal of Agricultural & Food Chemistry, 38(7), 1565–1571. [Google Scholar] [Crossref] 
  53. Stepansky, A., Kovalski, I., & Perl-Treves, R. (1999a). Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Systematics and Evolution, 217, 313-332. [Google Scholar] [Crossref] 
  54. Stepansky, A., Kovalski, I., Schaffer, A. A., & Perl-Treves, R. (1999b). Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genetic Resources and Crop Evolution, 46, 53–62. [Google Scholar] [Crossref] 
  55. Szamosi, C. (2005). The importance of Hungarian melon (Cucumis melo L.) landraces, local types and old varieties. International Journal of Horticultural Sciences, 11(4), 83-87. [Google Scholar] [Crossref] 
  56. Tsukaya, H. (2005). Leaf shape: genetic controls and environmental factors. International Journal of Developmental Biology, 49(5-6), 547–555. [Google Scholar] [Crossref] 
  57. UPOV. (2019). International union for the protection of new varieties of plants: Guidelines for the conduct of tests for distinctness, uniformity and stability. Cucumber, Gherkin, UPOV code: Cucum_Sat (Cucumis sativus L.) Geneva, Switzerland. [Google Scholar]
  58. Xiao, L., Ge, X. G., Gong, X., Hao, G., & Zheng, S. X. (2004). ISSR Variation in the endemic and endangered plant Cycas guizhouensis (Cycadaceae). Annual Botany, 94(1), 133-138. [Google Scholar] [Crossref] 
  59. Yu, X., Hyldgaard, B., Rosenqvist, E., Ottosen, C. O., & Chen, J. (2015). Interspecific hybridization in Cucumis leads to the divergence of phenotypes in response to low light and extended photoperiods. Frontiers in Plant Science, 6, 802. [Google Scholar] [Crossref]