Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2022, Vol. 3(2) 163-183

Impact of Stocking Density on the Survival, Growth and Injury of Narrow-Clawed Crayfish (Pontastacus leptodactylus) Reared in a Flowing Brackish Water System 

Yavuz Mazlum & Cumhur Uzun

pp. 163 - 183   |  DOI: https://doi.org/10.29329/actanatsci.2022.352.08   |  Manu. Number: MANU-2210-16-0003.R1

Published online: December 09, 2022  |   Number of Views: 111  |  Number of Download: 609


Abstract

The crayfish population dramatically declined in most lakes and dams in Türkiye; hence, crayfish culture is a possible option to increase the supply. This study aimed to determine the effects of stocking density on the growth performance and survival of newly-hatched third instars of narrow-clawed crayfish (Pontastacus leptodactylus) in a flowing brackish water system. The third instars were randomly stocked in nine tanks (area: 1.7 m^{2}) for 120 days with three densities of 10, 50, and 100 crayfish/m^{2}. The results indicated that the stocking density significantly affected the growth performance, survival rate, proportion of the cheliped injury, biomass, length distribution, and feed conversion ratio (FCR). The mean final weights and total lengths were 2.27, 1.40, and 1.08 g and 4.83, 3.73 and 3.51 cm according to the densities, respectively. The highest stocking density increased the total biomass yield and proportion of the cheliped injury but reduced the survival, growth, molting frequency and regeneration of the appendage. The survival (86.3%) and specific growth rate (1.16 cm/day) in the 10 individuals/m^{2} group were significantly higher than the other groups. The cheliped injury was also found to be the lowest in the 10 individual/m^{2} group (p<0.05). Our study results showed that significant differences in FCR value were observed at different stocking densities. In summary, higher stocking density at the end of this study increased the frequency and severity of aggressive interactions of crayfish, limiting molting frequency and growth performance. A density of 10-50 crayfish/m^{2} is recommended for better growth parameters while 100 crayfish/m^{2} is suggested for higher biomass yield.

Keywords: Freshwater crayfish, Pontastacus leptodactylus, Stocking density, Growth, Brackish water, Cheliped injury, Molting


How to Cite this Article?

APA 6th edition
Mazlum, Y. & Uzun, C. (2022). Impact of Stocking Density on the Survival, Growth and Injury of Narrow-Clawed Crayfish (Pontastacus leptodactylus) Reared in a Flowing Brackish Water System  . Acta Natura et Scientia, 3(2), 163-183. doi: 10.29329/actanatsci.2022.352.08

Harvard
Mazlum, Y. and Uzun, C. (2022). Impact of Stocking Density on the Survival, Growth and Injury of Narrow-Clawed Crayfish (Pontastacus leptodactylus) Reared in a Flowing Brackish Water System  . Acta Natura et Scientia, 3(2), pp. 163-183.

Chicago 16th edition
Mazlum, Yavuz and Cumhur Uzun (2022). "Impact of Stocking Density on the Survival, Growth and Injury of Narrow-Clawed Crayfish (Pontastacus leptodactylus) Reared in a Flowing Brackish Water System  ". Acta Natura et Scientia 3 (2):163-183. doi:10.29329/actanatsci.2022.352.08.

References
  1. Ackefors, H., Gydemo, R., & Westin, L. (1989). Growth and survival of juvenile crayfish Astacus asfacus in relation to food and density. In De Pauw, N., Jaspers, E., Ackefors, H., & Wilkins, N. (Eds.), Aquaculture: A Biotechnology in Progress (pp. 365-373). European Aquaculture Society. [Google Scholar]
  2. Adiyana, K., Supriyono, E., Junior, M. Z., & Thesiana, L. (2014). Application of various shelter on stress response and survival rate of spiny lobster Panulirus homarus nursery. Jurnal Kelautan Nasional, 9, 1-9. [Google Scholar]
  3. Aksu, Ö., Benzer, F., Erişir, M., Can, E., & Kutluyer, F. (2016). Influence of stock density on digestive enzyme activity (trypsin), heat shock protein 70 (HSP70), and oxidative stress biomarkers of narrow clawed crayfish, Astacus leptodactylus Eschscholtz, 1823 (Decapoda, Astacidae). Crustaceana, 89(10), 1193-1202. https://doi.org/10.1163/15685403-00003585 [Google Scholar] [Crossref] 
  4. Araneda, M., Perez, E. P., & Gasca-Leyvai, E. (2008). White shrimp Penaeus vannamei culture in freshwater at three densities: Condition state based on length and weight. Aquaculture, 283(1-4), 13-18. https://doi.org/10.1016/j.aquaculture.2008.06.030 [Google Scholar] [Crossref] 
  5. Ariyati, R. W., Rejeki, S., & Bosma, R. H. (2018). The effect of different feed and stocking densities on growth and survival rate of blue swimming crablets (Portunus pelagicus). IOP Conference Series: Earth and Environmental Science, 116, 012071. https://doi.org/10.1088/1755-1315/116/1/012071 [Google Scholar] [Crossref] 
  6. Baran, I., Timur, M., Oray, I. K., Timur, G., Rahe, R., & Soylu, E. (1987). Investigation on a disease causing serious mortality on crayfish (Astacus leptodactylus) populations in Turkey. Symposium of the European Aquaculture Society in Sweden, (pp. 6-7). [Google Scholar]
  7. Berber, S., Mazlum, Y., Demirci, A., & Türel, S. (2012). Structure, growth, mortality and size at sexual maturity of various populations Astacus leptodactylus Eschscholtz, 1823 (Cructacea: Decopada) in Turkey. Marine Science and Technology Bulletin, 1(1), 21-27. [Google Scholar]
  8. Bolat, Y. (2001). An estimation in the population density of freshwater crayfish (Astacus leptodactylus salinus Nordman, 1842) living in Hoyran Area of Egirdir Lake. [Ph.D. Thesis. Süleyman Demirel University]. [Google Scholar]
  9. Bolat, Y., Demirci, A., & Mazlum, Y. (2010). Size selectivity of traps (Fyke-Nets) of different mesh size on the narrow-clawed crayfish, Astacus leptodactylus (Eschscholtz, 1823) (Decapoda, Astacidae) in Eğirdir Lake, Turkey. Crustaceana, 83(11), 1349-1361. https://doi.org/10.1163/001121610X536969 [Google Scholar] [Crossref] 
  10. Boštjančić, L. L., Bonassin, L., Anušić, L., Lovrencić, L., Besendorfer, V., Maguire, I., Grandjean, F., Austin, C. M., Greve, C., Hamadou, A. B., & Mlinarec, J. (2021). The Pontastacus leptodactylus (Astacidae) repeatome provides insight into genome evolution and reveals remarkable diversity of satellite DNA. Frontiers in Genetics, 11, 611745. https://doi.org/10.3389/fgene.2020.611745  [Google Scholar] [Crossref] 
  11. Brown, P. B., Wilson, K. A., Wetzel, J. E., & Hoene, R. (1995). Increased densities result in reduced weight gain of crayfish Orconectes virilis. Journal of the World Aquaculture Society, 26(2), 165- 171. https://doi.org/10.1111/j.1749-7345.1995.tb00240.x [Google Scholar] [Crossref] 
  12. Calabrese, V., Frate, L., Iannotta, F., Prisco, I., & Stanisci, A. (2017). Acacia saligna: An invasive species on the coast of Molise (southern Italy). Forest@ - Journal of Silviculture and Forest Ecology, 14, 28–33. https://doi.org/10.3832/efor2211-013 [Google Scholar] [Crossref] 
  13. Celada, J. D., Carral, J. M., Gaudioso, V. R. González, J., Lopez-Baissón, C., & Fernández, R. (1993). Survival and growth of juvenile freshwater crayfish Pasifastacus leniusculus (Dana) fed two raw diets and two commercial formulated feeds. Journal of the World Aquaculture Society, 24(1), 108-111. https://doi.org/10.1111/j.1749-7345.1993.tb00157.x [Google Scholar] [Crossref] 
  14. Chattopadhyay, D. N., Mohapatra, B. C., Adhikari, S., Pani, K. C., Jena, J. K., & Eknath, A. E. (2013). Effects of stocking density of Labeo rohita on survival, growth and production in cages. Aquaculture International, 21, 19-29. https://doi.org/10.1007/s10499-012-9528-2 [Google Scholar] [Crossref] 
  15. Claessen, D., de Roos, A. M., & Persson, L. (2004). Population dynamic theory of size-dependent cannibalism. Proceedings of the Royal Society B: Biological Sciences, 271(1537), 333-340. https://doi.org/10.1098/rspb.2003.2555 [Google Scholar] [Crossref] 
  16. Cortés-Jacinto, E., Villareal-Colmenares, H., Civera-Cerecedo, R., & Martínez-Córdova, L. R. (2003). Effect of dietary protein level on growth and survival of juvenile freshwater crayfish Cherax quadricarinatus (Decapoda: Parastacidae). Aquaculture Nutrition, 9(4), 207-213. https://doi.org/10.1046/j.1365-2095.2003.00241.x [Google Scholar] [Crossref] 
  17. Cortes-Jacinto, E., Villarreal-Colmenares, H., Civera-Cerecedo, R., & Naranjo Pavamo, J. (2004). Effect of dietary protein levels on the growth and survival of pre adult fresh water crayfish Cherax quadricarinatus (von Martens, 1868) in mono sex culture. Aquaculture Research, 35(1), 71-79. https://doi.org/10.1111/j.1365-2109.2004.00988.x [Google Scholar] [Crossref] 
  18. D’Abramo, L. R., Daniels, W. H., Fondren, M. W., & Brunson, M. W. (1995). Management practices for culture of freshwater shrimp (Macruhrrrchium rosenbergii) in temperate climates. Bulletin 1030. Mississippi Agricultural Forestry Experimental Station, Mississippi State University. Mississippi, USA. [Google Scholar]
  19. D’Abramo, L. R., Heinen, J. M., Robinette, H. R., & Collins, J. S. (1989). Production of the freshwater prawn Macrobrachiurn rosenbergii stocked as juveniles at different densities in temperature zone ponds. Journal of the World Aquaculture Society, 20(2), 81-89. https://doi.org/10.1111/j.1749-7345.1989.tb00527.x [Google Scholar] [Crossref] 
  20. D’Abramo, L. R., Wright, J. S., Wright, K. H., Bordner, C. E., & Conklin, D. E. (1985). Sterol requirements of cultured juvenile crayfish Pacifastacus leniusculus. Aquaculture, 49(3-4), 245-255. https://doi.org/10.1016/0044-8486(85)90083-3 [Google Scholar] [Crossref] 
  21. Daly, B., Stoner, A.W., & Eckert, G. L. (2012). Predator-induced behavioral plasticity of juvenile red king crabs (Paralithodes camtschaticus). Journal of Experimental Marine Biology and Ecology, 429, 47-54. https://doi.org/10.1016/j.jembe.2012.06.010 [Google Scholar] [Crossref] 
  22. Demirol, F., Yuksel, F., Gunduz, F., Beri, A., Guler, M., Yildirim, T., & Coban, M. Z. (2017). The stock assessment of crayfish (Astacus leptodactylus Eschscholtz, 1823) in the Keban Dam Lake. Turkish Journal of Fisheries and Aquatic Sciences, 17(7), 1373-1380. [Google Scholar]
  23. Duffy, R., Godwin, I., Purvis, I., & Nolan, J. (2011). Cannibalism in Juvenile Cherax destructor Clark: The role of diet and density in cannibalism of laboratory reared animals. Freshwater Crayfish, 18(1), 1–5. https://doi.org/10.5869/fc.2011.v18.1 [Google Scholar] [Crossref] 
  24. Erol, K. G., Özkök, R., Cilbiz, N., Küçükkara, R., Çınar, Ş., Tümgelir, L., Ceylan, M., Meke, T., Diler, Ö., Didinen, B., Bahadır, I., & Koca, S. (2017). Effect of different feed and stocking density on survival and growth performance of Astacus leptodactylus (Esch., 1823) juveniles. Journal of Limnology and Freshwater Fisheries Research, 3(3), 159-165. https://doi.org/10.17216/limnofish.304140 [Google Scholar] [Crossref] 
  25. Eversole, A. G., & McClain, W. R. (2000). Procambarid crayfish culture, pp. 185-198 In R. Stickney (Ed.), Encyclopedia of Aquaculture. John Wiley and Sons, Inc. [Google Scholar]
  26. Eversole, A. G., Mazlum, Y., Spacil, M. S. (2006). Procambarus acutus acutus (Girard) replacement of P. clarkii (Girard): A possible explanation. Freshwater Crayfish, 15, 63-68. [Google Scholar]
  27. Farhadi, A., & Jensen, M. (2016). Effects of photoperiod and stocking density on survival, growth and physiological responses of narrow clawed crayfish (Astacus leptodactylus). Aquaculture Research, 47(8), 2518-2527. https://doi.org/10.1111/are.12700 [Google Scholar] [Crossref] 
  28. Fatihah, S. N., Muhd-Farouk, H., Raduan, NII., Leong-Seng, L., & Ikhwanuddin, M. (2020). Effect of substrate on growth, survival and moulting in juvenile red claw, Cherax quadricarinatus. Journal of PeerScientist, 3(2), e1000027. https://doi.org/10.5281/zenodo.4038761 [Google Scholar] [Crossref] 
  29. Figiel, C. R., & Miller, G. L. (1995). The frequency of chela autotomy and its influence on the growth and survival of the crayfish Procambarus clarkii (Girard, 1852) (Decapoda, Cambaridae). Crustaceana, 68(8), 472-483. https://doi.org/10.1163/156854095X01628 [Google Scholar] [Crossref] 
  30. Franke, R., & Hörstgen-Schwark, G. (2015). Control of activity patterns in crowded groups of male noble crayfish Astacus astacus (Crustacea, Astacidea) by light regimes: A way to increase the efficiency of crayfish production? Aquaculture, 446, 103–110. https://doi.org/10.1016/j.aquaculture.2015.05.007 [Google Scholar] [Crossref] 
  31. Franke, R., Wessels, S., & Hörstgen-Schwark, G. (2013). Enhancement of survival and growth in crowded groups: the road towards an intensive production of the noble crayfish Astacus astacus L. in indoor recirculation systems. Aquaculture Research, 44(3), 451-461. https://doi.org/10.1111/j.1365-2109.2011.03052.x [Google Scholar] [Crossref] 
  32. Gao, Y., He, Z., Vector, H., Zhao, B., Li, Z., He, J., & Chu, Z. (2017). Effect of stocking density on growth, oxidative stress and HSP 70 of Pacific white shrimp Litopenaeus vannamei. Turkish Journal of Fisheries and Aquatic Sciences, 17(5), 877-884. https://doi.org/10.4194/1303-2712-v17_5_04 [Google Scholar] [Crossref] 
  33. García-Ulloa, G. M., Pérez-Moreno, M. R., Rodríguez-González, D., Gallo-García, M. C., Ponce Palafox, J. T., Rodríguez-González, H., & Góngora-Gómez, A. M. (2012). Stocking density for nursery production of red claw crayfish, Cherax quadricarinatus, in a recirculating system. Journal of Applied Aquaculture, 24(1), 8–15. https://doi.org/10.1080/10454438.2012.650599 [Google Scholar] [Crossref] 
  34. Garza de Yta, A., Davis, D. A., Rouse, D. B., Ghanawi, J., & Saoud, I. P. (2012). Evaluation of practical diets containing various terrestrial protein sources on survival and growth parameters of redclaw crayfish Cherax quadricarinatus. Aquaculture Research, 43(1), 84–90. https://doi.org/10.1111/j.1365-2109.2011.02806.x [Google Scholar] [Crossref] 
  35. Geddes, M. C., & Smallridge, M. (1993). Survival, growth and yield of the Australian freshwater crayfish Cherax destructor in extensive aquaculture ponds. Aquaculture, 114(1-2), 51–70. https://doi.org/10.1016/0044-8486(93)90250-3 [Google Scholar] [Crossref] 
  36. Ghanawi, J., & Saoud, I. P. (2012). Molting, reproductive biology, and hatchery management of redclaw crayfish Cherax quadricarinatus (von Martens 1868). Aquaculture, 358-359, 183-195. https://doi.org/10.1016/j.aquaculture.2012.06.019 [Google Scholar] [Crossref] 
  37. Gherardi, F., & Souty-Grosset, C. (2010). Astacus leptodactylus. The IUCN Red List of Threatened Species 2010. [Google Scholar]
  38. Golubev, A., Alekhnovich, P., Bodilovskaya, O. A., & Gopinathan, A. (2016). Some methodological approaches to the definition of limiting density for aquaculture of freshwater crayfish fingerlings. Aquaculture International, 25, 715–725. https://doi.org/10.1007/s10499-016-0065-2 [Google Scholar] [Crossref] 
  39. González, R., Celada, J. D., García, V., Carral, J. M., & SáezRoyuela, M. (2010). Stocking density for the intensive rearing of juvenile crayfish, Pacifastacus leniusculus (Astacidae), using Artemia nauplii to supplement a dry diet from the onset of exogenous feeding. Aquaculture International, 18, 371-378. https://doi.org/10.1007/s10499-009-9250-x [Google Scholar] [Crossref] 
  40. Hammond, K. S., Hollows, J. W., Townsend, C. R., & Lokman, P. M. (2006). Effects of temperature and water calcium concentration on growth, survival and molting of freshwater crayfish, Paranephrops zealandicus. Aquaculture, 251(2-4), 271–279. https://doi.org/10.1016/j.aquaculture.2005.05.032 [Google Scholar] [Crossref] 
  41. Harlıoğlu, M. M., & Güner, U. (2006). Studies on the recently discovered crayfish, Austropotamobius torrentium (Shrank, 1803), in Turkey: morphological analysis and meat yield. Aquaculture Research, 37(5), 538-542. https://doi.org/10.1111/j.1365-2109.2006.01451.x [Google Scholar] [Crossref] 
  42. He, M., Liu, F., & Wang, F. (2021). Quantitative analysis of density dependent resource utilization, cannibalism, and competition of the red swamp crayfish (Procambarus clarkii) in rice-crayfish cocultures without supplementary food. Aquaculture, 543, 736966. https://doi.org/10.1016/j.aquaculture.2021.736966 [Google Scholar] [Crossref] 
  43. Holdich, D. M. (1993). A review of astacid culture: Freshwater crayfish farming. Aquatic Living Resources, 6(4), 307-317. https://doi.org/10.1051/alr:1993032 [Google Scholar] [Crossref] 
  44. Jones, C. M., & Ruscoe, I. M. (2000). Assessment of stocking size and density in the production of redclaw crayfish, Cherax quadricarinatus (von Martens) (Decapoda: Parastacidae), cultured under earthen pond conditions. Aquaculture, 189(1-2), 63-71. https://doi.org/10.1016/S0044-8486(00)00359-8 [Google Scholar] [Crossref] 
  45. Jussila, J., Paganini, M., Mansfield, S., & Evans, L. H. (1999). On physiological responses, plasma glucose, total hemocyte counts and dehydration, of marron Cherax tenuimanus (Smith) to handling and transportation under simulated conditions. Freshwater Crayfish, 12, 154-167. [Google Scholar]
  46. Kale, S., & Berber, S. (2020). Trend analysis and comparison of forecast models for production of Turkish crayfish (Pontastacus leptodactylus Eschscholtz, 1823) in Turkey. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(Additional issue), 973-988. https://doi.org/10.29133/yyutbd.761275 [Google Scholar] [Crossref] 
  47. Keller, M. (1988). Finding a profitable population density in rearing summerlings of European crayfish Astacus astacus L. Freshwater Crayfish, 7, 259-266. [Google Scholar]
  48. Kokko, H., Harlioglu, M. M., Aydin, H., Makkonen, J., Gökmen, G., Aksu, Ö., & Jussila, J. (2018). Observations of crayfish plague infections in commercially important narrow-clawed crayfish populations in Turkey. Knowledge & Management of Aquatic Ecosystems, 419, 1-10. https://doi.org/10.1051/kmae/2018001 [Google Scholar] [Crossref] 
  49. Kouba, A., Petrusek, A., & Kozák, P. (2014). Continental-wide distribution of crayfish species in Europe: Update and maps. Knowledge & Management of Aquatic Ecosystems, 413, 1-5. https://doi.org/10.1051/kmae/2014007 [Google Scholar] [Crossref] 
  50. Kouba, A., Tíkal, J., Císař, P., Veselý, L., Fořt, M., Příborský, J., Patoka, J., & Buřič, M. (2016). The significance of droughts for hyporheic dwellers: evidence from freshwater crayfish. Scientific Reports, 6, 26569. https://doi.org/10.1038/srep26569 [Google Scholar] [Crossref] 
  51. Krishna, P. V., Prakash, B. K., Kumar, V. H., & Prabhavathi, K. (2015). Growth, survival and production of Pacific white shrimp Litopenaeus vannamei at different stocking densities under semiintensive culture system in Andhra Pradesh. International Journal of Advanced Research, 3(9), 446-452. [Google Scholar]
  52. Lutz, C. G. (1983). Population dynamics of red swamp crawfish (Procambarus clarkii) and white river crawfish (Procambarus acutus acutus) in two commercial ponds. [Master Thesis. Louisiana State University]. [Google Scholar]
  53. Lutz, C. G., & William, R. W. (1989). Estimation of heritabilities for growth, body size, and processing traits in red swamp crawfish, Procambarus clarkii (Girard). Aquaculture, 78(1), 21–33. https://doi.org/10.1016/0044-8486(89)90003-3 [Google Scholar] [Crossref] 
  54. Lutz, C. G., & Wolters, W. R. (1986). The effect of five stocking densities on growth and yield of red swamp crawfish Procambarus clarkii. Journal of the World Aquaculture Society, 17(1-4), 33-36. https://doi.org/10.1111/j.1749-7345.1986.tb00551.x [Google Scholar] [Crossref] 
  55. Mazlum, Y. (2007). Stocking density affects the growth, survival and cheliped injuries of third instars of narrow-clawed crayfish, Astacus leptodactylus Eschscholtz, 1823 juveniles. Crustaceana, 80(7), 803-815. https://doi.org/10.1163/156854007781363114 [Google Scholar] [Crossref] 
  56. Mazlum, Y., & Eversole, A. G. (2004). Observations on the life cycle of Procambarus acutus acutus in South Carolina culture ponds. Aquaculture, 238(1-4), 249-261. https://doi.org/10.1016/j.aquaculture.2004.05.028 [Google Scholar] [Crossref] 
  57. Mazlum, Y., & Eversole, A. G. (2005). Growth and survival of Procambarus acutus acutus (Girard, 1852) and P. clarkii (Girard, 1852) in competitive settings. Aquaculture Research, 36(6), 537-545. https://doi.org/10.1111/j.1365-2109.2005.01250.x [Google Scholar] [Crossref] 
  58. Mazlum, Y., & Uzun, C. (2008). Effects of shelter types on the growth, survival and feed conversion ratio on Astacus leptodactylus (Eschscholtz, 1823), Journal of FisheriesSciences.com, 2(3), 321-328. https://doi.org/10.3153/jfscom.mug.200719 [Google Scholar] [Crossref] 
  59. Mazlum, Y., Can, M. F., & Eversole, A. G. (2007). Morphometric relationship of length-weight and chelae length-width of eastern white river crayfish (Procambarus acutus acutus, Girard, 1852), under culture conditions. Journal of Applied Ichthyology, 23(5), 616-620. https://doi.org/10.1111/j.1439-0426.2007.01015.x [Google Scholar] [Crossref] 
  60. Mazlum, Y., Can, M. F., & Öksüz, A. (2019). Diversification of narrow-clawed crayfish (Pontastacus leptodactylus Eschscholtz, 1823) populations from different parts of Turkey. Marine and Life Sciences 1(1), 1-9. [Google Scholar]
  61. Mazlum, Y., Guner Gurlek, O., & Sirin, S. (2017). Effect of different substrates on survival and growth of juveniles of the freshwater narrow-clawed crayfish Astacus leptodactylus Eschscholtz, 1823 (Decapoda, Astacidae). Crustaceana, 90(11-12), 1289–1302. https://doi.org/10.1163/15685403-00003724 [Google Scholar] [Crossref] 
  62. Mazlum, Y., Yazici, M., & Güner Gürlek, O. (2020). Evaluation of stocking densities and feed types on growth and survival of narrow-clawed crayfish Pontastacus leptodactylus (Eschscholtz, 1823) reared under laboratory conditions. Fresenius Environmental Bulletin, 29(09A), 8283-8293. [Google Scholar]
  63. McClain, R. W. (1995). Effects of population density and feeding rate on growth and feed consumption of red swamp crawfish Procambarus clarkii. Journal of the World Aquaculture Society, 26(1), 14-23. https://doi.org/10.1111/j.1749-7345.1995.tb00204.x [Google Scholar] [Crossref] 
  64. McClain, W. R., & Romaire, R. P. (2004). Crayfish culture: A Louisiana aquaculture success story. World Aquaculture, 35(4), 31-35, 60-61. [Google Scholar]
  65. Nakata, K., & Goshima, S. (2004). Fecundity of the Japanese crayfish, Cambaroides japonicus: Ovary formation, egg number and egg size. Aquaculture, 242(1-4), 335-343. https://doi.org/10.1016/j.aquaculture.2004.08.043 [Google Scholar] [Crossref] 
  66. Naranjo-Paramo, J., Hernandez-Liamas, A., & Villareal, H. (2004). Effect of stocking density on growth, survival and yield of juvenile redclaw crayfish Cherax quadricarinatus (Decapoda: Parastacidae) in gravelline commercial nursery ponds. Aquaculture, 242(1-4), 197-206. https://doi.org/10.1016/j.aquaculture.2004.05.017 [Google Scholar] [Crossref] 
  67. Nga, B. T., Lürling, M., Peeters, E. T. H. M., Roijackers, R., Scheffer, M., & Nghia, T. T. (2005). Chemical and physical effects of crowding on growth and survival of Penaeus monodon Fabricius post-larvae. Aquaculture, 246(1-4), 455–465. https://doi.org/10.1016/j.aquaculture.2005.02.026 [Google Scholar] [Crossref] 
  68. Nyström, P. (1994). Survival of juvenile signal crayfish Pacifastacus leniusculus in relation to light intensity and density. Nordic Journal of Freshwater Research, 69, 162-166. [Google Scholar]
  69. Oray, I. (1990). The crayfish situation in Turkey. In N. De Pauw & R. Billard (Eds.), Business joins science. Reviews and panel reports of the International Conference Aquaculture Europe ’89, Bredene, Belgium. pp. 250-251. [Google Scholar]
  70. Paul, P., Rahman, A., Hossain, M. M., Islam, S., Mondal, S., & Haq, M. (2016). Effect of stocking density on the growth and production of freshwater prawn (Macrobrachium rosenbergii). International Journal of Fisheries and Aquaculture Sciences, 6(1), 77-86. [Google Scholar]
  71. Peña-Herrejón, G. A., Sánchez-Velázquez, J., García-Trejo, J. F., Soto-Zarazúa, G. M., & Rico-García, E. (2019). Effect of stocking density on growth and survival of the prawn Macrobrachium tenellum, cultured in a recirculating aquaculture system. Latin American Journal of Aquatic Research, 47(2), 342-34. http://doi.org/10.3856/vol47-issue2-fulltext-14 [Google Scholar]
  72. Pinto, G. F., & Rouse, D. B. (1996). Growth and survival of the Australian red claw crayfish Cherax quadricarinatus at three densities in earthen ponds. Journal of the World Aquaculture Society, 27(2), 187-193. https://doi.org/10.1111/j.1749-7345.1996.tb00268.x [Google Scholar] [Crossref] 
  73. Ponce-Palafox, J. T., Pavia, Á. A., Mendoza López, D. G., Arredondo-Figueroa, J. L., Lango-Reynoso, F., del Refugio Castañeda-Chávez, M., Esparza-Leal, H., Ruiz-Luna, A., Páez-Ozuna, F., Castillo-Vargasmachuca, S. G., & Peraza-Gómez, V. (2019). Response surface analysis of temperature-salinity interaction effects on water quality, growth and survival of shrimp Penaeus vannamei postlarvae raised in biofloc intensive nursery production. Aquaculture, 503, 312-321. https://doi.org/10.1016/j.aquaculture.2019.01.020 [Google Scholar] [Crossref] 
  74. Ponce-Palafox, J., López-Uriostegui, F., Lango-Reynoso, F., Castañeda-Chávez, M., GalavizVilla, I., Montoya-Mendozal, J., & Esparza-Leal, H. (2018). Influence of density on growth and survival of freshwater prawn Macrobrachium americanum (Bate, 1868) (Caridea: Palaemonidae) cultured in a cage-pond system. Spanish Journal of Agricultural Research, 16(4), e0508-e0508. https://doi.org/10.5424/sjar/2018164-13420 [Google Scholar] [Crossref] 
  75. Qin, J. G., Ingerson, T., Geddes, M. C., Kumar, M., & Clarke, S. (2001). Size grading did not enhance growth, survival and production of marron (Cherax tenuimanus) in experimental cages. Aquaculture, 195(3-4), 239–251. https://doi.org/10.1016/S0044-8486(00)00554-8 [Google Scholar] [Crossref] 
  76. Rahman, M. M., & Verdegem, M. (2010). Effects of intra- and interspecific competition on diet, growth and behaviour of Labeo calbasu (Hamilton) and Cirrhinus cirrhosus (Bloch). Applied Animal Behavioural Science 128(1-4), 103-108. https://doi.org/10.1016/j.applanim.2010.09.015 [Google Scholar] [Crossref] 
  77. Romano, N., & Zeng, C. (2017). Cannibalism of decapod crustaceans and implications for their aquaculture: A review of its prevalence, influencing factors, and mitigating methods. Reviews in Fisheries Science & Aquaculture, 25(1), 42–69. https://doi.org/10.1080/23308249.2016.1221379 [Google Scholar] [Crossref] 
  78. Sáez-Royuela, M., Carral, J. M., Celada, J. D., & Muñoz, C. (1995). Effects of management on survival and growth of stage 2 juvenile freshwater crayfish (Pacifastacus leniusculus Dana) under laboratory conditions. Aquaculture, 133(2), 123-133. https://doi.org/10.1016/0044-8486(95)00004-L [Google Scholar] [Crossref] 
  79. Saoud, I. P., Garza De Yta, A., & Ghanawi, J. (2012). A review of nutritional biology and dietary requirements of redclaw crayfish Cherax quadricarinatus (von Martens 1868). Aquaculture Nutrition, 18(4), 349–368. https://doi.org/10.1111/j.1365-2095.2011.00925.x [Google Scholar] [Crossref] 
  80. Savolainen, R., Ruohonen, K., & Railo, E. (2004). Effect of stocking density on growth, survival and cheliped injuries of stage 2 juvenile signal crayfish Pasifastacus leniusculus Dana. Aquaculture, 231(1-4), 237–248. https://doi.org/10.1016/j.aquaculture.2003.09.045 [Google Scholar] [Crossref] 
  81. Savolainen, R., Ruohonen, K., & Tulonen, J. (2003). Effects of bottom substrate and presence of shelter in experimental tanks on growth and survival of signal crayfish, Pacifastacus leniusculus (Dana) juveniles. Aquaculture Research, 34(4), 289–297. https://doi.org/10.1046/j.1365-2109.2003.00817.x [Google Scholar] [Crossref] 
  82. Shoko, A. P., Limbu, S. M., Mrosso, H. D. J., Mkenda, A. F., & Mgaya, Y. D. (2016). Effect of stocking density on growth, production and economic benefits of mixed sex Nile tilapia (Oreochromis niloticus) and African sharptooth catfish (Clarias gariepinus) in polyculture and monoculture. Aquaculture Research, 47(1), 36-50. https://doi.org/10.1111/are.12463 [Google Scholar] [Crossref] 
  83. Shrivastava, V., Chadha, N. K.., Koya, Md., Lakra W. S., Sawant, P. B., & Remya, S. (2017). Effect of Stocking Density on Growth and Survival of Fenneropenaeus merguiensis (de Man, 1888) Post Larvae. International Journal of Current Microbiology and Applied Sciences, 6(9), 1779-1789. https://doi.org/10.20546/ijcmas.2017.609.220 [Google Scholar] [Crossref] 
  84. Sirin, S., & Mazlum, Y. (2017). Effect of dietary supplementation of calcium chloride on growth, survival, moulting frequency and body composition of narrow‐clawed crayfish, Astacus leptodactylus (Eschscholtz, 1823). Aquaculture Nutrition, 23(4), 805-813. https://doi.org/10.1111/anu.12447 [Google Scholar] [Crossref] 
  85. Skurdal, J., Qvenild, T., Taugbol, T., & Garnas, E. (1993). Long term study of exploitation, yield and stock structure of noble crayfish Astacus astacus in Lake Steinsfjorden, S.E. Norway. Freshwater Crayfish, 9, 118-133. [Google Scholar]
  86. Skurdal, J., Taugbol, T., Fjeldi, E., & Qvenild, T. (1988). Cheliped loss in Astacus astacus. Freshwater Crayfish, 7, 165-170. [Google Scholar]
  87. Sookying, D., Silva, F S. D., Davis, D, A., & Hanson, T. R. (2011). Effects of stocking density on the performance of Pacific white shrimp Litopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybean meal diet. Aquaculture, 319(1-2), 232-239. https://doi.org/10.1016/j.aquaculture.2011.06.014 [Google Scholar] [Crossref] 
  88. SPSS. (2008). Statistical Package for Social Sciences. User´s Guide Statistics. Ver. 17. Copyright SPSS Inc., USA. [Google Scholar]
  89. Sun, S., Fu, H., Gu, Z., & Zhu, J. (2016). Effects of stocking density on the individual growth and differentiation of the oriental river prawn Macrobrachium nipponense (de Haan, 1849) (Caridea: Palaemonidae). Journal of Crustacean Biology, 36(6), 769–775. https://doi.org/10.1163/1937240X-00002482 [Google Scholar] [Crossref] 
  90. Supriyono, E., Prihardianto, R. W., & Nirmala, K. (2017). The stress and growth responses of spiny lobster Panulirus homarus reared in recirculation system equipped by PVC shelter. Aquaculture, Aquarium, Conservation & Legislation Bioflux, 10(2), 147-155. [Google Scholar]
  91. Svoboda, J., Kozubíková, E., Kozák, P., Kouba, A., Bahadir, K. S., Diler, Ö., Diler, I., Policar, T., & Petrusek, A. (2012). PCR detection of the crayfish plague pathogen in narrow-clawed crayfish inhabiting Lake Egirdir in Turkey. Diseases of Aquatic Organisms, 98(3), 255-259. https://doi.org/10.3354/dao02445 [Google Scholar] [Crossref] 
  92. Svoboda, J., Strand, D. A., Vrålstad, T., Grandjean, F., Edsman, E., Kozák, P., Kouba, A., Fristad R. F., Koca, S. B., & Petrusek, A. (2014). The crayfish plague pathogen can infect freshwater-inhabiting crabs. Freshwater Biology, 59(5), 918–929. https://doi.org/10.1111/fwb.12315 [Google Scholar] [Crossref] 
  93. Tidwell, J. H., Coyle, S. D., & Schulmeister, G. (1998). Effects of added substrate on the production and population characteristics of freshwater prawns Macrobrachium rosenbergii in ponds. Journal of the World Aquaculture Society, 29(1), 17-22. https://doi.org/10.1111/j.1749-7345.1998.tb00295.x [Google Scholar] [Crossref] 
  94. Tidwell, J. H., Coyle, S. D., Bright, A., VanArnum, L. A., & Weibel, C. (2003). The effects of size grading and length of nursery period on growth and population structure of freshwater prawns stocked in temperate zone ponds with added substrates. Aquaculture, 218(1-4), 209-218. https://doi.org/10.1016/S0044-8486(02)00341-1 [Google Scholar] [Crossref] 
  95. Tidwell, J. H., Coyle, S. D., Weibel, C., & Evans, J. (1999). Effects and interactions of stocking density and added substrate on production and population structure of freshwater prawns Macrobrachiurn rosenbergii. Journal of the World Aquaculture Society, 30(2), 174-179. https://doi.org/10.1111/j.1749-7345.1999.tb00864.x [Google Scholar] [Crossref] 
  96. Tidwell, J. H., Coyle, S., & Dasgupta, S. (2004). Effects of stocking different fractions of size-graded juvenile prawns on production and population structure during a temperature limited growout period. Aquaculture, 231(1-4), 123-134. https://doi.org/10.1016/S0044-8486(03)00544-1 [Google Scholar] [Crossref] 
  97. Turan, F., Mazlum, Y., Yıldırım, B. Y., & Gezer, A. (2012). Use of dietary Pelargonium sidoides extract to improve growth and body composition of narrow‐clawed crayfish Astacus leptodactylus Eschscholtz, 1823 juveniles. Turkish Journal of Fisheries and Aquatic Sciences, 12, 233-238. https://doi.org/10.4194/1303-2712-v12_2_06 [Google Scholar] [Crossref] 
  98. Turkstat. (2021). Fishery statistics 2021. Turkish Statistical Institute (TURKSTAT). Ankara. http://www.tuik.gov.tr [Google Scholar]
  99. Ulikowski, D., Krzywosz, T., & Smietana, P. (2006). A comparison of survival and growth in juvenile A. leptodactylus (Esch.) and P. leniusculus (Dana) under controlled conditions. Bulletin Français de la Pêche et de la Pisciculture, 380–381, 1245-1253. https://doi.org/10.1051/kmae:2006023 [Google Scholar] [Crossref] 
  100. Verhoef, G. D., & Austin, C. M. (1999). Combined effects of temperature and density on the growth and survival of juveniles of the Australian freshwater crayfish, Cherax destructor. Aquaculture, 170(1), 37-47. https://doi.org/10.1016/S0044-8486(98)00394-9 [Google Scholar] [Crossref] 
  101. Villagran, E. R. (1993). Effects of stocking density, forage availability, and supplemental feeding on production of red swamp crawfish in pools. [Master’s Thesis. Louisiana State University]. [Google Scholar]
  102. Wheatley, M. G., & Ayers, J., (1995). Scaling of calcium, inorganic contents, and organic contents to body mass during the molting cycle of the fresh-water crayfish Procambarus clarkia (Girard). Journal of Crustacean Biology, 15(3), 409–417. https://doi.org/10.1163/193724095X00415 [Google Scholar] [Crossref] 
  103. Whisson, G. (1995). Growth and survival as a function of density for marron (Cherax tenuimanus (Smith)) stocked in a recirculating system. Freshwater Crayfish, 10, 630-637. [Google Scholar]
  104. Williams, A. S., Davis, D. A., & Arnold, C. R. (1996). Density-dependent growth and survival of Penaeus setiferus and Penaeus vannamei in a semi-closed recirculating system. Journal of the World Aquaculture Society, 27(1), 107–112. https://doi.org/10.1111/j.1749-7345.1996.tb00600.x [Google Scholar] [Crossref] 
  105. Wu, J. L., Namikoshi, A., Nishizawa, T., Mushiake, K., Teruya, K., & Muroga, K. (2001). Effects of shrimp density on transmission of penaeid acute viremia in Penaeus japonicus by cannibalism and the waterborne route. Diseases of Aquatic Organisms, 47(2), 129–135. https://doi.org/10.3354/dao047129 [Google Scholar] [Crossref] 
  106. Xiaolong, G., Mo, Z., Xian, L., Fucun, W., Changbin, S., & Ying, L. (2018). Effects of stocking density on survival, growth, and food intake of Haliotis discus hannai Ino in recirculating aquaculture system. Aquaculture, 482, 221-430. https://doi.org/10.1016/j.aquaculture.2017.07.005 [Google Scholar] [Crossref] 
  107. Yu, J., Xiong, M., Ye, S., Li, W., Xiong, F., Liu, J., & Zhang, T. (2020). Effects of stocking density and artificial macrophyte shelter on survival, growth and molting of juvenile red swamp crayfish (Procambarus clarkii) under experimental conditions. Aquaculture, 521, 735001. https://doi.org/10.1016/j.aquaculture.2020.735001 [Google Scholar] [Crossref] 
  108. Yuan, Q., Qian, J., Ren, Y., Zhang, T. L., Li, Z. J., & Liu, J. S. (2018). Effects of stocking density and water temperature on survival and growth of the juvenile Chinese mitten crab, Eriocheir sinensis, reared under laboratory. Aquaculture, 495, 631-636. https://doi.org/10.1016/j.aquaculture.2018.06.029 [Google Scholar] [Crossref] 
  109. Zhang, Z., Yokota, M., & Strüssmann, C. A. (2017). Cannibalism in the Japanese mitten crab, Eriocheir japonica. Hydrobiologia, 807, 367-376. https://doi.org/10.1007/s10750-017-3411-0 [Google Scholar] [Crossref] 
  110. Zheng, J., Mao, Y., Su, Y., & Wang, J. (2020). Effects of stocking density on the survival, growth and physical injury of Marsupenaeus japonicus juveniles in a flowing water aquaculture system. Aquaculture Research, 51(4), 1500-1506. https://doi.org/10.1111/are.14496 [Google Scholar] [Crossref] 
  111. Zhuang, Z., & Ahearn, G. A. (1996). Ca2+ transport processes of lobster hepatopancreas brush border membrane vesicles. Journal of Experimental Biology, 199, 1195-1208. https://doi.org/10.1242/jeb.199.5.1195 [Google Scholar] [Crossref]