Acta Nat. Sci.   |  e-ISSN: 2718-0638

Review article | Acta Natura et Scientia 2023, Vol. 4(2) 94-113

Using the Totipotency Abilities of Plants in Plant Breeding: Tissue Culture Techniques

İsmail Karakaş

pp. 94 - 113   |  DOI: https://doi.org/10.29329/actanatsci.2023.354.1   |  Manu. Number: MANU-2302-24-0001.R1

Published online: August 14, 2023  |   Number of Views: 341  |  Number of Download: 631


Abstract

Some of the biotechnological methods have been successfully applied in cultivated plants after the 1980s and have become practical by being included in the agricultural systems of many countries around the world. Totipotency in plant tissue culture; It can be defined as the ability to produce a completely new plant from a living plant cell. Theoretically, it is possible to grow completely new plants from root, leaf, pollen and petal cells. Plant tissue culture The in vitro aseptic culture of cells, tissues, organs and their components under defined physical and chemical conditions is an important tool in both basic and applied studies and commercial application. The combination of classical and biotechnological methods in plant breeding programs has ample potential to produce plants of superior quality and better disease tolerance and stress tolerance capacities, selection of useful variants in well-adapted high yielding genotypes. As a tool that provides significant opportunities for plant quality improvement and economic sustainability, plant tissue culture has reduced the time and workforce in plant breeding programs.

Keywords: Breeding, Tissue culture, Totipotency, Embryo culture, Protoplast fusion, Haploid technique


How to Cite this Article?

APA 6th edition
Karakas, I. (2023). Using the Totipotency Abilities of Plants in Plant Breeding: Tissue Culture Techniques . Acta Natura et Scientia, 4(2), 94-113. doi: 10.29329/actanatsci.2023.354.1

Harvard
Karakas, I. (2023). Using the Totipotency Abilities of Plants in Plant Breeding: Tissue Culture Techniques . Acta Natura et Scientia, 4(2), pp. 94-113.

Chicago 16th edition
Karakas, Ismail (2023). "Using the Totipotency Abilities of Plants in Plant Breeding: Tissue Culture Techniques ". Acta Natura et Scientia 4 (2):94-113. doi:10.29329/actanatsci.2023.354.1.

References
  1. Allum, J. F., Bringloe, D. H., & Roberts, A. V. (2007). Chromosome doubling in a Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Reports, 26, 1977-1984. https://doi.org/10.1007/s00299-007-0411-y [Google Scholar] [Crossref] 
  2. Aydin, M., Arslan, E., Taspinar, M. S., Karadayi, G., & Agar, G. (2016). Analyses of somaclonal variation in endosperm-supported mature embryo culture of rye (Secale cereale L.). Biotechnology & Biotechnological Equipment, 30(6), 1082-1089. https://doi.org/10.1080/13102818.2016.1224980 [Google Scholar] [Crossref] 
  3. Baday, S. J. (2018). Plant tissue culture. International Journal of Agriculture and Environmental Research, 4(4), 977-990. [Google Scholar]
  4. Bains, N. S., Singh, J., Ravi, & Gosal, S. S. (1995). Production of wheat haploids through embryo rescue from wheat × maize crosses. Current Science, 69(7), 621-623. [Google Scholar]
  5. Bairu, M. W., Aremu, A. O., & Van Staden, J. (2011). Somaclonal variation in plants: Causes and detection methods. Plant Growth Regulation, 63(2), 147-173. https://doi.org/10.1007/s10725-010-9554-x [Google Scholar] [Crossref] 
  6. Bajaj, Y. P. S. (Ed.). (1990a). Biotechnology in Agriculture and Forestry 11: Somaclonal Variation in Crop Improvement I. Springer. [Google Scholar]
  7. Bajaj, Y. P. S. (1990b). Somaclonal variation-origin, induction, cryopreservation, and implications in plant breeding. In Y. P. S. Bajaj (Ed.), Somaclonal Variation in Crop Improvement I (pp. 3-48). Springer. [Google Scholar]
  8. Baydar, H. (2020). Bitki Genetiği ve Islahı (1. Baskı). Nobel Akademik Yayıncılık. [Google Scholar]
  9. Bhojwani, S. S., & Dantu, P. K. (2013). Production of virus-free plants. In S. S. Bhojwani & P. K. Dantu (Eds.), Plant Tissue Culture: An Introductory Text, (pp. 227-243). Springer. https://doi.org/10.1007/978-81-322-1026-9_16 [Google Scholar] [Crossref] 
  10. Bhojwani, S. S., & Razdan, M. K. (1986). Plant tissue culture: Theory and practice. Elsevier. [Google Scholar]
  11. Bhojwani, S. S., Power, J. B., & Cocking, E. C. (1977). Isolation, culture and division of cotton callus protoplasts. Plant Science Letters, 8(1), 85-89. https://doi.org/10.1016/0304-4211(77)90176-6 [Google Scholar] [Crossref] 
  12. Bidabadi, S. S., & Jain, S. M. (2020). Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants, 9(6), 702. https://doi.org/10.3390/plants9060702 [Google Scholar] [Crossref] 
  13. Blakeslee, A. F., Belling, J., Farnham, M. E., & Bergner, A. D. (1922). A haploid mutant in the jimson weed, “Datura stramonium”. Science, 55(1433), 646-647. https://doi.org/10.1126/science.55.1433.646 [Google Scholar] [Crossref] 
  14. Braun, A. C. (1959). A demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin. Proceedings of the National Academy of Sciences, 45(7), 932-938. https://doi.org/10.1073/pnas.45.7.932 [Google Scholar] [Crossref] 
  15. Bridgen, M. P., Houtven, W. V., & Eeckhaut, T. (2018). Plant tissue culture techniques for breeding. In J. Van Huylenbroeck (Ed.), Ornamental Crops. Handbook of Plant Breeding, vol 11 (pp. 127-144). https://doi.org/10.1007/978-3-319-90698-0_6 [Google Scholar] [Crossref] 
  16. Brown, D. C. W., & Thorpe, T. A. (1995). Crop improvement through tissue culture. World Journal of Microbiology and Biotechnology, 11(4), 409-415. https://doi.org/10.1007/BF00364616 [Google Scholar] [Crossref] 
  17. Carlson, P. S., Smith, H. H., & Dearing, R. D. (1972). Parasexual interspecific plant hybridization. Proceedings of the National Academy of Sciences, 69(8), 2292-2294. https://doi.org/10.1073/pnas.69.8.2292 [Google Scholar] [Crossref] 
  18. Collins, G. B., & Grosser, J. W. (1984). Culture of embryos. In I. K. Vasil & F. Constabel (Eds.), Cell culture and somatic cell genetics of plants Vol. 1. Laboratory procedures and their applications (pp. 241-257). Academic Press. [Google Scholar]
  19. Condic, M. L. (2014). Totipotency: What it is and what it is not. Stem Cells and Development, 23(8), 796-812. https://doi.org/10.1089/scd.2013.0364 [Google Scholar] [Crossref] 
  20. Dagla, H. R. (2012). Plant tissue culture: Historical developments and applied aspects. Resonance, 17(8), 759-767. [Google Scholar]
  21. Davey, M. R., Anthony, P., Patel, D., & Power, J. B. (2010). Plant protoplasts: Isolation, culture and plant regeneration. In M. R. Davey & P. Anthony (Eds.), Plant cell culture essential methods (pp. 153-173). Wiley-Blackwell. https://doi.org/10.1002/9780470686522.ch9 [Google Scholar] [Crossref] 
  22. Davey, M. R., Anthony, P., Power, J. B., & Lowe, K. C. (2005). Plant protoplasts: status and biotechnological perspectives. Biotechnology Advances, 23(2), 131-171. https://doi.org/10.1016/j.biotechadv.2004.09.008 [Google Scholar] [Crossref] 
  23. Davey, M. R., Kumar, V., & Hammatt, N. (1994). In vitro culture of legumes. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 313-329). Springer. https://doi.org/10.1007/978-94-017-2681-8_13 [Google Scholar] [Crossref] 
  24. Debergh, P. (1994). In vitro culture of ornamentals. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 561–573). Springer. https://doi.org/10.1007/978-94-017-2681-8_22 [Google Scholar] [Crossref] 
  25. Dulberger, R. (1973). Distyly in Linum pubescens and L. mucronatum. Botanical Journal of the Linnean Society, 66(2), 117-126. https://doi.org/10.1111/j.1095-8339.1973.tb02164.x [Google Scholar] [Crossref] 
  26. Emaldi, U., Trujillo, I., & De Garcia, E. (2004). Comparison of characteristics of bananas (Musa sp.) from the somaclone CIEN BTA-03 and its parental clone Williams. Fruits, 59(4), 257-263. https://doi.org/10.1051/fruits:2004024 [Google Scholar] [Crossref] 
  27. Fehér, A. (2019). Callus, dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology?. Frontiers in Plant Science, 10, 536. https://doi.org/10.3389/fpls.2019.00536 [Google Scholar] [Crossref] 
  28. Forster, B. P., Heberle-Bors, E., Kasha, K. J., & Touraev, A. (2007). The resurgence of haploids in higher plants. Trends in Plant Science, 12(8), 368-375. https://doi.org/10.1016/j.tplants.2007.06.007 [Google Scholar] [Crossref] 
  29. Furuta, H., Shinoyama, H., Nomura, Y., Maeda, M., & Makara, K. (2004). Production of intergeneric somatic hybrids of chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura] and wormwood (Artemisia sieversiana JF Ehrh. ex. Willd) with rust (Puccinia horiana Henning) resistance by electrofusion of protoplasts. Plant Science, 166(3), 695-702. https://doi.org/10.1016/j.plantsci.2003.11.007 [Google Scholar] [Crossref] 
  30. Genç, İ., & Yağbasanlar, T., (2018). Bitki ıslahı (9. Baskı). Çukurova Üniversitesi Yayınları Genel Yayın No: 59, Kitap Yayın No: A-13. [Google Scholar]
  31. Gengenbach, B. G., & Umbeck, P. (1982). Characteristics of T-cytoplasm revertants from tissue culture. Maize Genetics Cooperation Newsletter, 56, 140-142. [Google Scholar]
  32. George, E. F., Hall, M. A., & Klerk, G. J. D. (2008). Plant tissue culture procedure – Background. In E. F. George, M. A. Hall, G. J. D. Klerk (Eds.), Plant Propagation by Tissue Culture (pp. 1-28). Springer. https://doi.org/10.1007/978-1-4020-5005-3_1 [Google Scholar] [Crossref] 
  33. Germana, M. A. (2006). Doubled haploid production in fruit crops. Plant Cell, Tissue and Organ Culture, 86, 131-146. https://doi.org/10.1007/s11240-006-9088-0 [Google Scholar] [Crossref] 
  34. Germanà, M. A. (2009). Haploids and doubled haploids in fruit trees. In A. Touraev, B. P. Forster S. M. Jain (Eds.), Advances in Haploid Production in Higher Plants. Springer. https://doi.org/10.1007/978-1-4020-8854-4_21 [Google Scholar] [Crossref] 
  35. Gosal, S. S., & Bajaj, Y. P. S. (1983). Interspecific hybridization between Vigna mungo and Vigna radiata through embryo culture. Euphytica, 32(1), 129-137. https://doi.org/10.1007/BF00036873 [Google Scholar] [Crossref] 
  36. Gosal, S. S., Wani, S. H., & Kang, M. S. (2010). Biotechnology and crop improvement. Journal of Crop Improvement, 24(2), 153-217. https://doi.org/10.1080/15427520903584555 [Google Scholar] [Crossref] 
  37. Green, C. E. (1977). Prospects for crop improvement in the field of cell culture. HortScience, 12(2), 131-134. https://doi.org/10.21273/HORTSCI.12.2.131 [Google Scholar] [Crossref] 
  38. Gregory, F. G., & De Ropp, R. S. (1938). Vernalization of excised embryos. Nature, 142(3593), 481-482. https://doi.org/10.1038/142481b0 [Google Scholar] [Crossref] 
  39. Gregory, F. G., & Purvis, O. N. (1938). Studies in Vernalisation of Cereals: II. the vernalisation of excised mature embryos, and of developing ears. Annals of Botany, 2(5), 237-251. [Google Scholar]
  40. Grosser, J. W. (1994). In vitro culture of tropical fruits. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 475-496). Springer. https://doi.org/10.1007/978-94-017-2681-8_19 [Google Scholar] [Crossref] 
  41. Grosser, J. W., Calovic, M., & Louzada, E. S. (2010). Protoplast fusion technology—somatic hybridization and cybridization. In M. R. Davey, & P. Anthony (Eds.), Plant cell culture: essential methods. (pp. 175-198). Wiley-Blackwell. [Google Scholar]
  42. Guha, S., & Maheshwari, S. C. (1964). In vitro production of embryos from anthers of Datura. Nature, 204 (4957), 497-497. https://doi.org/10.1038/204497a0 [Google Scholar] [Crossref] 
  43. Guo, L., Xu, W., Zhang, Y., Zhang, J., & Wei, Z. (2017). Inducing triploids and tetraploids with high temperatures in Populus sect. Tacamahaca. Plant Cell Reports, 36, 313-326. https://doi.org/10.1007/s00299-016-2081-0 [Google Scholar] [Crossref] 
  44. Haberlandt, G. J. F. (1902). Culturversuehe mit isolierten Pflanzenzellen. Sitzungsberichte der Akademie der Wissenschaften mathematisch-naturwissenschaftliche Klasse, 111, 69-91. [Google Scholar]
  45. Hagimori, M., Nagaoka, M., Kato, N., & Yoshikawa, H. (1992). Production and characterization of somatic hybrids between the Japanese radish and cauliflower. Theoretical and Applied Genetics, 84(7-8), 819-824. https://doi.org/10.1007/bf00227390 [Google Scholar] [Crossref] 
  46. Harry, I. S., & Thorpe, T. A. (1994). In vitro culture of forest trees. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 539-560). Springer. https://doi.org/10.1007/978-94-017-2681-8_21 [Google Scholar] [Crossref] 
  47. Hassawi, D. S., Qrunfleh, I., & Dradkah, N. (2005). Production of doubled haploids from some Jordanian wheat cultivars via anther culture technique. Journal of Food Agriculture and Environment, 3(1), 161-164. [Google Scholar]
  48. Heinz, D. J. (1973). Sugar-cane improvement through induced mutations using vegetative propagules and cell culture techniques. International Atomic Energy Agency, Vienna (Austria). Joint FAO/IAEA Div. of Atomic Energy in Food and Agriculture; Proceedings series: Panel on Mutation Breeding of Vegetatively Propagated and Perennial Crops (pp. 53-59). Austria. [Google Scholar]
  49. Holmes, F. O. (1948). The filterable viruses of determinative bacteriology. In F. O. Holmes (Ed.), The filterable viruses (pp. 1127-1286). Williams & Wilkins Co. [Google Scholar]
  50. Hussain, A., Qarshi, I. A., Nazir, H., & Ullah, I. (2012). Plant tissue culture: Current status and opportunities. In A. Leva & L. M. R. Rinaldi (Eds.), Recent Advances in Plant in Vitro Culture (pp. 1-28). IntechOpen. https://doi.org/10.5772/50568 [Google Scholar] [Crossref] 
  51. Ishaku, G. A., Ayuba Abaka Kalum, M. A., & Islam, S. (2020). Applications of protoplast fusion in plant biotechnology. Asian Journal of Biotechnology and Genetic Engineering, Article no.AJBGE.55804. [Google Scholar]
  52. Jones, M. G. K. (1994). In vitro culture of potato. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 363-378). Springer. https://doi.org/10.1007/978-94-017-2681-8_15 [Google Scholar] [Crossref] 
  53. Kameya, T., Miyazawa, N., & Toki, S. (1990). Production of somatic hybrids between Solanum melongena L. and S. integrifolium Poir. Japanese Journal of Breeding, 40(4), 429-434. https://doi.org/10.1270/jsbbs1951.40.429 [Google Scholar] [Crossref] 
  54. Kane, M. (2011). Propagation by shoot culture. In R. N., Trigiano, & Gray, D. J. (Eds.), Plant tissue culture, development and biotechnology (pp 181-191). CRC Press. [Google Scholar]
  55. Kang, M. S., Subudhi, P. K., Baisakh, N., & Priyadarshan, P. M. (2007). Crop breeding methodologies: Classic and modern. In M. S. Kang & P. M. Priyadarshan (Eds.), Breeding major food staples (pp. 38-40). https://doi.org/10.1002/9780470376447.ch1 [Google Scholar] [Crossref] 
  56. Karakaş, İ., & Tonk, F. A. (2022). Plants that can be used as plant-based edible vaccines; current situation and recent developments. Virology & Immunology Journal, 6(3), 000302. https://doi.org/10.23880/vij-16000302 [Google Scholar] [Crossref] 
  57. Karp, A. (1995). Somaclonal variation as a tool for crop improvement. Euphytica, 85, 295-302. https://doi.org/10.1007/BF00023959 [Google Scholar] [Crossref] 
  58. Karp, A. (1994). Origins, causes and uses of variation in plant tissue cultures. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 139-151). Springer. https://doi.org/10.1007/978-94-017-2681-8_6 [Google Scholar] [Crossref] 
  59. Kasha, K. J. (1974). Haploids in higher plants: Advances and potential. Proceedings of the 1st International Symposium. Canada. [Google Scholar]
  60. Kasha, K. J., & Maluszynski, M. (2003). Production of doubled haploids in crop plants. An introduction. In M. Maluszynski, K. J. Kasha, B. P. Forster & I. Szarejko (Eds.), Doubled haploid production in crop plants: A manual (pp. 1-4). Springer. https://doi.org/10.1007/978-94-017-1293-4_1 [Google Scholar] [Crossref] 
  61. Komar, V., Vigne, E., Demangeat, G., & Fuchs, M. (2007). Beneficial effect of selective virus elimination on the performance of Vitis vinifera cv. Chardonnay. American Journal of Enology and Viticulture, 58(2), 202-210. https://doi.org/10.5344/ajev.2007.58.2.202 [Google Scholar] [Crossref] 
  62. Kozai, T. (1988). Autotrophic (sugar free) tissue culture for promoting the growth of plantlets in vitro and for reducing biological contamination. Proceedings of the International Symposium on Application of Biotechnology for Small Industries, Thailand. pp. 39-51. [Google Scholar]
  63. Kozai, T. (1991). Micropropagation under photoautotrophic conditions. In P. C. Debergh, & R. H. Zimmerman (Eds.), Micropropagation: Technology and Application (pp. 447-469). Springer. https://doi.org/10.1007/978-94-009-2075-0_26 [Google Scholar] [Crossref] 
  64. Krikorian, A. D. (1994). In vitro culture of plantation crops. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 497–537). Springer. https://doi.org/10.1007/978-94-017-2681-8_20 [Google Scholar] [Crossref] 
  65. Krishnamurthi, M., & Tlaskal, J. (1974). Fiji disease resistant Saccharum officinarum var. ‘Pindar’ sub clones from tissue cultures. Proceedings of the Australian Society of Sugar Cane Technology, 15, 130-137. [Google Scholar]
  66. Kumari, P. T., & Aswath, C. (2018). Haploid and double haploids in ornamentals – A review. International Journal of Current Microbiology and Applied Sciences, 7(07), 1322-1336. https://doi.org/10.20546/ijcmas.2018.707.158 [Google Scholar] [Crossref] 
  67. Laibach, F. (1925). Das Taubwerden von Bastardsamen und die kunstliche Aufzucht früh absterbender Bastardembryonen. Zeitschrift für Botanik, 17, 417-459. [Google Scholar]
  68. Laibach, F. (1929). Ectogenesis in plants: Methods and genetic possibilities of propagating embryos otherwise dying in the seed. Journal of Heredity, 20(5), 201-208. https://doi.org/10.1093/oxfordjournals.jhered.a103178 [Google Scholar] [Crossref] 
  69. Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation — A novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60, 197-214. https://doi.org/10.1007/BF02342540 [Google Scholar] [Crossref] 
  70. Lee, M., & Phillips, R. L. (1988). The chromosomal basis of somaclonal variation. Annual Review of Plant Physiology and Plant Molecular Biology, 39(1), 413-437. https://doi.org/10.1146/annurev.pp.39.060188.002213 [Google Scholar] [Crossref] 
  71. Loberant, B., & Altman, A. (2010). Micropropagation of plants. In M. C. Flickinger (Ed.), Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology (pp. 3499-3515). Wiley. https://doi.org/10.1002/9780470054581.eib442 [Google Scholar] [Crossref] 
  72. Loebenstein, G., Berger, P. H., Brunt, A. A., & Lawson, R. H. (Eds.). (2001). Virus and virus-like diseases of potatoes and production of seed-potatoes. Springer. https://doi.org/10.1007/978-94-007-0842-6 [Google Scholar] [Crossref] 
  73. Maluszynski, M., Kasha, K. J., & Szarejko, I. (2003). Published doubled haploid protocols in plant species. In M. Maluszynski, K. J. Kasha, B. P. Forster, & I. Szarejko (Eds.), Doubled haploid production in crop plants: A manual (pp. 309-335). Springer. https://doi.org/10.1007/978-94-017-1293-4_46 [Google Scholar] [Crossref] 
  74. Mattheij, W. M., Eijlander, R., De Koning, J. R. A., & Louwes, K. M. (1992). Interspecific hybridization between the cultivated potato Solanum tuberosum subspecies tuberosum L. and the wild species S. circaeifolium subsp. circaeifolium Bitter exhibiting resistance to Phytophthora infestans (Mont.) de Bary and Globodera pallida (Stone) Behrens: 1. Somatic hybrids. Theoretical and Applied Genetics, 83(4), 459-466. https://doi.org/10.1007/bf00226534 [Google Scholar] [Crossref] 
  75. Meins, F. (1983). Heritable variation in plant cell culture. Annual Review of Plant Physiology, 34(1), 327-346. https://doi.org/10.1146/annurev.pp.34.060183.001551 [Google Scholar] [Crossref] 
  76. Morel, G., & Martin, C. (1952). Guérison de dahlias atteints d’une maladie à virus [Cure of dahlias attacked by a virus disease]. Comptes rendus hebdomadaires des seances de l'Academie des sciences, 235(21), 1324-1325. [Google Scholar]
  77. Muralidhar, R. V., & Panda, T. (2000). Fungal protoplast fusion – A revisit. Bioprocess Engineering, 22, 429-431. https://doi.org/10.1007/s004490050755 [Google Scholar] [Crossref] 
  78. Narayanaswami, S., & Norstog, K. (1964). Plant embryo culture. The Botanical Review, 30(4), 587-628. [Google Scholar]
  79. Nhut, D. T. (2022). General information: some aspects of plant tissue culture. In D. T. Nhut, H. T. Tung, & E. CT. Yeung (Eds.), Plant tissue culture: New techniques and application in horticultural species of tropical region (pp. 1-23). Springer. https://doi.org/10.1007/978-981-16-6498-4_1 [Google Scholar] [Crossref] 
  80. Oono, K. (1978). Test tube breeding of rice by tissue culture. Tropical Agriculture Research Series: Proceedings of A Symposium on Tropical Agriculture Researches, 11, 109-124. [Google Scholar]
  81. Palmer, C. E., & Keller, W. A. (1994). In vitro culture of oilseeds. In I. K. Vasil, & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 413-455). Springer. https://doi.org/10.1007/978-94-017-2681-8_17 [Google Scholar] [Crossref] 
  82. Phillips, R. L., Kaeppler, S. M., & Peschke, V. M. (1990). Do we understand somaclonal variation?. In H. J. J. Nijkamp, L. H. W. Van Der Plas & J. Van Aartrijk (Eds), Progress in plant cellular and molecular biology: Proceedings of the VIIth international congress on plant tissue and cell culture (pp. 131-141). Springer. https://doi.org/10.1007/978-94-009-2103-0_19 [Google Scholar] [Crossref] 
  83. Quack, F. (1977). Meristem culture: A potential technique for in vitro virus-free plants production in vegetatively propagated crops. In J. Reinert & Y. P. S. Bajaj (Eds.), Advances in plant tissue culture: Current developments and future trends (pp. 598-615). Springer. [Google Scholar]
  84. Raghavan, V. (1980). Embryo culture. International Review of Cytology, 11, 209-240. https://doi.org/10.1016/S0074-7696(08)60331-9 [Google Scholar] [Crossref] 
  85. Raghavan, V. (1994). In vitro methods for the control of fertilization and embryo development. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 173-194). Springer. https://doi.org/10.1007/978-94-017-2681-8_8 [Google Scholar] [Crossref] 
  86. Read, P. E. (2004). Micropropagation: past, present and future. Acta Horticulturae, 748_1, 17-27. https://doi.org/10.17660/ActaHortic.2007.748.1 [Google Scholar] [Crossref] 
  87. Reynolds, J. F. (1994). In vitro culture of vegetable crops. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 331–362). Springer. https://doi.org/10.1007/978-94-017-2681-8_14 [Google Scholar] [Crossref] 
  88. Sangwan-Norreel, B. S., Sangwan, R. S., & Paré, J. (1986). Haploïdie et embryogenèse provoquée in vitro. Bulletin de la Société Botanique de France. Actualités Botaniques, 133(4), 7-39. https://doi.org/10.1080/01811789.1986.10826796 [Google Scholar] [Crossref] 
  89. Schieder, O., & Vasil, I. K. (1961). Protoplast fusion and somatic hybridization. International Review of Cytology, 11, 21-46. https://doi.org/10.1016/S0074-7696(08)60324-1 [Google Scholar] [Crossref] 
  90. Shepard, J. F., Bidney, D., & Shahin, E. (1980). Potato protoplasts in crop improvement. Science, 208(4439), 17-24. https://doi.org/10.1016/S0074-7696(08)60324-1 [Google Scholar] [Crossref] 
  91. Sivagamasundari, U. (2022). Concepts of plant tissue culture. In H. K. Singh (Ed.), Current research and innovations in plant pathology Volume-16 (pp. 57-69). Akinik Publishers. [Google Scholar]
  92. Skirvin, R. M., & Janick, J. (1976). Tissue culture-induced variation in scented Pelargonium spp. Journal of the American society for Horticultural Science, 101(3), 281-290. https://doi.org/10.21273/JASHS.101.3.281 [Google Scholar] [Crossref] 
  93. Skirvin, R. M., McPheeters, K. D., & Norton, M. (1994). Sources and frequency of somaclonal variation. HortScience, 29(11), 1232-1237. [Google Scholar]
  94. Smith, R. H. (2012). Plant tissue culture: Techniques and experiments (Third ed.). Academic Press. [Google Scholar]
  95. Swapnil, Singh, D., Ekka, J. P., & Kumari, P (2020). Somatic hybridization: An effective tool for crop improvement. Food and Scientific Reports, 1(7), 21-23. [Google Scholar]
  96. Szała, L., Sosnowska, K., Popławska, W., Liersch, A., Olejnik, A., Kozłowska, K., Bocianowski, J., & Cegielska-Taras, T. (2016). Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.). Breeding Science, 66(4), 516-521. https://doi.org/10.1270/jsbbs.15042 [Google Scholar] [Crossref] 
  97. Tefera, A. A. (2019). Review on application of plant tissue culture in plant breeding. Journal of Natural Sciences Research, 9(3), 20-25. https://doi.org/10.7176/JNSR/9-3-03 [Google Scholar] [Crossref] 
  98. Trigiano, R. N., & Gray, D. J. (Eds.) (2004). Plant development and biotechnology. CRC Press. https://doi.org/10.1201/9780203506561 [Google Scholar] [Crossref] 
  99. Tripathi, M. K., Tiwari, S., Tripathi, N., Tiwari, G., Bhatt, D., Vibhute, M., Gupta, N., Mishra, N., Parihar, P., Singh, P., Sharma, A., Ahuja, A., & Tiwari, S. (2021). plant tissue culture techniques for conservation of biodiversity of some plants appropriate for propgation in degraded and temperate areas. In M. Tripathi (Ed.), Current Topics in Agricultural Sciences Vol. 4 (pp. 30-60). B P International. https://doi.org/10.9734/bpi/ctas/v4/2119C [Google Scholar] [Crossref] 
  100. Vasil, I. K. (2008). A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Reports, 27, 1423-1440. https://doi.org/10.1007/s00299-008-0571-4 [Google Scholar] [Crossref] 
  101. Vasil, I. K., & Vasil, V. (1994). In vitro culture of cereals and grasses. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 293-312). Plant cell and tissue culture (pp. 293-312) Springer. https://doi.org/10.1007/978-94-017-2681-8_12 [Google Scholar] [Crossref] 
  102. Vasil, V., & Hildebrandt, A. C. (1965a). Growth and tissue formation from single, isolated tobacco cells in microculture. Science, 147(3664), 1454-1455. https://doi.org/10.1126/science.147.3664.1454 [Google Scholar] [Crossref] 
  103. Vasil, V., & Hildebrandt, A. C. (1965b). Differentiation of tobacco plants from single, isolated cells in microcultures. Science, 150(3698), 889-892. https://doi.org/10.1126/science.150.3698.889 [Google Scholar] [Crossref] 
  104. Vasil, V., & Hildebrandt, A. C. (1967). Further studies on the growth and differentiation of single, isolated cells of tobacco in vitro. Planta, 75, 139-151. https://doi.org/10.1007/BF00387129 [Google Scholar] [Crossref] 
  105. Verma, M. M., Ravi, & Sandhu, J. S. (1995). Characterization of the interspecific cross Cicer anetinum L.× C. judaicum (Boiss). Plant Breeding, 114(6), 549-551. https://doi.org/10.1111/j.1439-0523.1995.tb00856.x [Google Scholar] [Crossref] 
  106. Verma, N., Bansal, M. C., & Kumar, V. (2008). Protoplast fusion technology and its biotechnological applications. Chemical Engineering Transactions, 14, 113-120. [Google Scholar]
  107. Wang, J., Jiang, J., & Wang, Y. (2013b). Protoplast fusion for crop improvement and breeding in China. Plant Cell, Tissue and Organ Culture (PCTOC), 112, 131-142. https://doi.org/10.1007/s11240-012-0221-y [Google Scholar] [Crossref] 
  108. Wang, J., Li, D. L., & Kang, X. Y. (2012). Induction of unreduced megaspores with high temperature during megasporogenesis in Populus. Annals of Forest Science, 69, 59-67. https://doi.org/10.1007/s13595-011-0152-5 [Google Scholar] [Crossref] 
  109. Wang, J., Shi, L., Song, S.Y., Tian, J., & Kang, X.Y. (2013a) Tetraploid production through zygotic chromosome doubling in Populus. Silva Fennica, 47(2), 932. https://doi.org/10.14214/sf.932 [Google Scholar] [Crossref] 
  110. Wang, P. J., & Hu, C. Y. (1980). Regeneration of virus-free plants through in vitro culture. In A. Fiechter (Ed.), Advances in Biomedical Engineering, Volume 18. Advances in Biochemical Engineering, vol 18 (pp. 61-99). Springer. https://doi.org/10.1007/3-540-09936-0_3 [Google Scholar] [Crossref] 
  111. Wang, Q. M., & Wang, L. (2012). An evolutionary view of plant tissue culture: somaclonal variation and selection. Plant Cell Reports, 31(9), 1535-1547. https://doi.org/10.1007/s00299-012-1281-5 [Google Scholar] [Crossref] 
  112. Yatsuyanagi, S., & Takahashi, K. (1953). Studies on the vernalization of wheat.: I. The effects of sugar and anaerobic condition in the vernalization of wheat. Japanese Journal of Breeding, 2(4), 214-216. https://doi.org/10.1270/jsbbs1951.2.214 [Google Scholar] [Crossref] 
  113. Yeung E. C., Thorpe T. A. & Jensen C. J. (1981). In vitro fertilization and embryo culture. In T. A. Thorpe (Ed.), Plant tissue culture. Methods and applications in agriculture (pp. 253-271). Academic Press. [Google Scholar]
  114. Zenkteler, M., & Nitzsche, W. (1990). In vitro culture of wheat ovules. In Y. P. S. Bajaj (Ed.), Wheat. Biotechnology in Agriculture and Forestry, vol 13. Springer, https://doi.org/10.1007/978-3-662-10933-5_14 [Google Scholar] [Crossref] 
  115. Zhang, X. Z., Liu, G. J., Yan, L. Y., Zhao, Y. B., Chang, R. F., & Wu, L. P. (2003). Creating triploid germplasm via induced 2n pollen in Capsicum annuum L. The Journal of Horticultural Science and Biotechnology, 78(1), 84-88. https://doi.org/10.1080/14620316.2003.11511592 [Google Scholar] [Crossref] 
  116. Zhong, J. J., Yu, J. T., & Yoshida, T. (1995). Recent advances in plant cell cultures in bioreactors. World Journal of Microbiology and Biotechnology, 11(4), 461-467. https://doi.org/10.1007/bf00364621 [Google Scholar] [Crossref] 
  117. Zimmerman, R. H., & Swartz, H. J. (1994). In vitro culture of temperate fruits. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 457-474). Springer. https://doi.org/10.1007/978-94-017-2681-8_18 [Google Scholar] [Crossref]