Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2024, Vol. 5(2) 150-159

Comparative Analysis of Nutritional Values of Fishmeals Produced From Whole Anchovy and Sprat and Farmed Salmon Viscera in the Black Sea Region

Barış Bayraklı & Sezgin Yıldız

pp. 150 - 159   |  DOI: https://doi.org/10.61326/actanatsci.v5i2.299   |  Manu. Number: MANU-2412-27-0009

Published online: November 23, 2024  |   Number of Views: 2  |  Number of Download: 17


Abstract

Fishmeal is a nutrient-rich feed ingredient that is commonly used in commercial feed formulations for many species, primarily in the global aquaculture and pet food sectors. This study investigates the nutritional composition of fishmeals derived from whole anchovy, sprat, and salmon viscera, produced in Turkey during the 2023-2024 fishing season. A total of 91 samples were analyzed using a Bruker-type MPA brand spectrophotometer to determine crude protein, crude fat, moisture, and crude ash content. The carbohydrate content was calculated by difference, and energy content was derived using established conversion factors. Anchovy meal exhibited the highest crude protein content at 73.55%, followed by sprat meal at 70.08%, and salmon viscera meal at 63.58%. In terms of crude fat, salmon viscera meal had the highest concentration at 11.76%, compared to anchovy meal at 10.33% and sprat meal at 9.92%. Moisture content was highest in salmon viscera meal (10.45%), while anchovy and sprat meals had lower moisture levels of 6.53% and 7.15%, respectively. The crude ash content was also highest in salmon viscera meal at 11.96%. Carbohydrate content was most pronounced in sprat meal at 3.77%, with salmon viscera and anchovy meals containing 3.32% and 1.52%, respectively. Energy content was highest in anchovy meal at 393.26 kcal/100g. These findings highlight the distinct nutritional profiles of the fishmeals studied, allowing for the identification of the most suitable option for aquaculture nutrition. Specifically, anchovy meal emerges as the best choice due to its high protein content and energy efficiency.

Keywords: Fishmeal, Anchovy meal, Sprat meal, Salmon viscera meal, Nutritional composition, Black Sea


How to Cite this Article?

APA 6th edition
Bayrakli, B. & Yildiz, S. (2024). Comparative Analysis of Nutritional Values of Fishmeals Produced From Whole Anchovy and Sprat and Farmed Salmon Viscera in the Black Sea Region . Acta Natura et Scientia, 5(2), 150-159. doi: 10.61326/actanatsci.v5i2.299

Harvard
Bayrakli, B. and Yildiz, S. (2024). Comparative Analysis of Nutritional Values of Fishmeals Produced From Whole Anchovy and Sprat and Farmed Salmon Viscera in the Black Sea Region . Acta Natura et Scientia, 5(2), pp. 150-159.

Chicago 16th edition
Bayrakli, Baris and Sezgin Yildiz (2024). "Comparative Analysis of Nutritional Values of Fishmeals Produced From Whole Anchovy and Sprat and Farmed Salmon Viscera in the Black Sea Region ". Acta Natura et Scientia 5 (2):150-159. doi:10.61326/actanatsci.v5i2.299.

References
  1. Ahmed, I., Jan, K., Fatma, S., & Dawood, M. A. (2022). Muscle proximate composition of various food fish species and their nutritional significance: A review. Journal of Animal Physiology and Animal Nutrition, 106(3), 690–719. https://doi.org/10.1111/jpn.13711 [Google Scholar] [Crossref] 
  2. Ahuja, I., Dauksas, E., Remme, J. F., Richardsen, R., & Løes, A. K. (2020). Fish and fish waste-based fertilizers in organic farming–With status in Norway: A review. Waste Management, 115, 95–112. https://doi.org/10.1016/j.wasman.2020.07.025 [Google Scholar] [Crossref] 
  3. Albrektsen, S., Kortet, R., Skov, P. V., Ytteborg, E., Gitlesen, S., Kleinegris, D., Mydland, T., Hansen, J. Ø., Lock, J., Mørkøre, T., James, P., Wang, X., Whitaker, R. D., Vang, B., Hatlen, B., Daneshvar, E., Bhatnagar, A., Jensen, L. B., & Øverland, M. (2022). Future feed resources in sustainable salmonid production: A review. Reviews in Aquaculture, 14(4), 1790-1812. https://doi.org/10.1111/raq.12673 [Google Scholar] [Crossref] 
  4. Alfiko, Y., Xie, D., Astuti, R. T., Wong, J., & Wang, L. (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquaculture and Fisheries, 7(2), 166-178. https://doi.org/10.1016/j.aaf.2021.10.004 [Google Scholar] [Crossref] 
  5. Anonymous (2005). Code of federal regulations. FDA, HHS, 21, part 101.9. [Google Scholar]
  6. Ansari, F. A., Guldhe, A., Gupta, S. K., Rawat, I., & Bux, F. (2021). Improving the feasibility of aquaculture feed by using microalgae. Environmental Science and Pollution Research, 28(32), 43234–43257. https://doi.org/10.1007/s11356-021-14989-x [Google Scholar] [Crossref] 
  7. Anuar, N. (2023). Nutritional properties evaluation of blowfly larvae from fish and chicken wastes for Asian sea bass feed formulation application. Journal of Tropical Life Science, 13(3), 431–444. https://doi.org/10.11594/jtls.13.03.02 [Google Scholar] [Crossref] 
  8. Bayraklı, B. (2023). Utilization of fish by-products for sustainable aquaculture: Nutritional analysis of fishmeal derived from the by-products of Oncorhynchus mykiss. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 9(2), 8–14. https://doi.org/10.58626/menba.1360875 [Google Scholar] [Crossref] 
  9. Bayraklı, B. (2024). Impact of cooking processes on the toxic metals, macro, and trace elements composition of Rapana venosa meat. Aquatic Research, 7(2), 74–82. https://doi.org/10.3153/AR24007 [Google Scholar] [Crossref] 
  10. Bayraklı, B., & Duyar, H. A. (2021). Effect of freshness on fishmeal quality; anchovy meal. Journal of Anatolian Environmental and Animal Sciences, 6(1), 57–65. https://doi.org/10.35229/jaes.824885 [Google Scholar] [Crossref] 
  11. Bayraklı, B., Duyar, H. A., & Yıldız, S. (2022). Comparison of different analysis methods for determination of nutrient composition of fishmeal produced from anchovy (Engraulis encrasicolus). Food Bulletin, 1(1), 7–10. https://doi.org/10.29329/foodb.2022.495.02 [Google Scholar] [Crossref] 
  12. Boyd, C. E., McNevin, A. A., & Davis, R. P. (2022). The contribution of fisheries and aquaculture to the global protein supply. Food Security, 14(3), 805-827. https://doi.org/10.1007/s12571-021-01246-9 [Google Scholar] [Crossref] 
  13. Campanati, C., Willer, D., Schubert, J., & Aldridge, D. C. (2022). Sustainable intensification of aquaculture through nutrient recycling and circular economies: More fish, less waste, blue growth. Reviews in Fisheries Science & Aquaculture, 30(2), 143–169. https://doi.org/10.1080/23308249.2021.1897520 [Google Scholar] [Crossref] 
  14. Chang, V. (2023). Supplementation of Kappaphycus alvarezii solid waste (bioethanol production) in fish feed for Barbonymus schwanenfeldii growth. Borneo Journal of Marine Science and Aquaculture, 7, 14–29. https://doi.org/10.51200/bjomsa.v7i.3757 [Google Scholar] [Crossref] 
  15. Einarsson, Á., & Óladóttir, D. (2020). Fisheries and aquaculture: The food security of the future. Academic Press. https://doi.org/10.1016/C2019-0-02984-6 [Google Scholar] [Crossref] 
  16. El-Dakar, Y., Shalaby, A., & Abd Elmonem, A. (2015). Growth performance and feed utilization of hybrid red tilapia, Oreochromis niloticus (Linnaeus) x Oreochromis mosambicus (Peters) fed different dietary protein and energy levels under rearing in seawater conditions. Mediterranean Aquaculture Journal, 7(1), 12-21. https://doi.org/10.21608/maj.2015.4629 [Google Scholar] [Crossref] 
  17. Eroldoğan, O. T., Glencross, B., Novoveska, L., Gaudêncio, S. P., Rinkevich, B., Varese, G. C., Carvalho, F., Tasdemir, D., Safarik, I., Nielsen, S. L., Rebours, C., Lada, L. B., Robbens, J., Strode, E., Haznedaroğlu, B. Z., Kotta, J., Evliyaoğlu, E., Oliveira, J., Girão, M., ... Rotter, A. (2023). From the sea to aquafeed: A perspective overview. Reviews in Aquaculture, 15(3), 1028-1057. https://doi.org/10.1111/raq.12740 [Google Scholar] [Crossref] 
  18. Ferris, D. A., & Shanklin, C. W. (1993). Cost of alternative methods of disposal of food waste in a university food service operation. National Association of College and University Food Service Journal, 26(10), 49-56. [Google Scholar]
  19. Foroutani, M., Parrish, C., Wells, J., Taylor, R., Rise, M., & Shahidi, F. (2018). Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): Effects on growth performance and muscle lipid and fatty acid composition. PLOS ONE, 13(9), e0198538. https://doi.org/10.1371/journal.pone.0198538 [Google Scholar] [Crossref] 
  20. Glencross, B., Fracalossi, D. M., Hua, K., Izquierdo, M., Mai, K., Øverland, M., Robb, D., Roubach, R., Schrama, J., Small, B., Tacon, A., P. Valente, L. M., Viana, T., Xie, S., & Yakupityage, A. (2023). Harvesting the benefits of nutritional research to address global challenges in the 21st century. Journal of the World Aquaculture Society, 54(2), 343–363. https://doi.org/10.1111/jwas.12948 [Google Scholar] [Crossref] 
  21. Gudbrandsdottir, I. Y., Saviolidis, N. M., Olafsdottir, G., Oddsson, G. V., Stefansson, H., & Bogason, S. G. (2021). Transition pathways for the farmed salmon value chain: Industry perspectives and sustainability implications. Sustainability, 13(21), 12106. https://doi.org/10.3390/su132112106 [Google Scholar] [Crossref] 
  22. Guo, J., Swanepoel, A., Qiu, X., Reis, J., Rhodes, M., & Davis, D. (2019). Use of salmon by-product meals as a replacement for anchovy meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 26(2), 490–501. https://doi.org/10.1111/anu.13011 [Google Scholar] [Crossref] 
  23. Hardy, R. W., Kaushik, S. J., Mai, K., & Bai, S. C. (2022). Fish nutrition—History and perspectives. Fish Nutrition. Academic Press. https://doi.org/10.1016/C2018-0-03211-9 [Google Scholar] [Crossref] 
  24. Henriksen, A. (2020). Fishery by-products, Calanus finmarchicus and mesopelagic fish species as alternatives to fishmeal and fish oil in feeds for Atlantic salmon (Salmo salar L). [MSc. Thesis. Norwegian University of Science and Technology]. [Google Scholar]
  25. Hossen, M., Das, M., Sumi, K., & Hasan, M. (2013). Effect of storage time on fish feed stored at room temperature and low temperature. Progressive Agriculture, 22(1–2), 115–122. https://doi.org/10.3329/pa.v22i1-2.16473 [Google Scholar] [Crossref] 
  26. Kokkali, M. (2023). Optimisation of trace mineral supplementation in diets for atlantic salmon smolt with reference to holistic fish performance in terms of growth, health, welfare, and potential environmental impacts. Frontiers in Physiology, 14, 1214987. https://doi.org/10.3389/fphys.2023.1214987 [Google Scholar] [Crossref] 
  27. Lall, S. P., & Dumas, A. (2022). Nutritional requirements of cultured fish: Formulating nutritionally adequate feeds (pp. 65-132). In A. Davis (Ed.), Feed and Feeding Practices in Aquaculture (Second edition). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821598-2.00005-9 [Google Scholar] [Crossref] 
  28. Lam, V. W., Allison, E. H., Bell, J. D., Blythe, J., Cheung, W. W., Frölicher, T. L., Gasall, M. A., & Sumaila, U. R. (2020). Climate change, tropical fisheries and prospects for sustainable development. Nature Reviews Earth & Environment, 1(9), 440–454. https://doi.org/10.1038/s43017-020-0071-9 [Google Scholar] [Crossref] 
  29. Litaay, C., Indriati, A., Sriharti, N., Mayasti, N., Tribowo, R., Andriana, Y., & Andriansyah, R. C. E. (2022). Physical, chemical, and sensory quality of noodles fortification with anchovy (Stolephorus sp.) flour. Food Science and Technology, 42, e75421. https://doi.org/10.1590/fst.75421 [Google Scholar] [Crossref] 
  30. Merrill, A. L., & Watt, B. K. (1973). Energy value of foods, basis and derivation (No: 74-85). Human Nutrition Research Branch, Agricultural Research Service, US Department of Agriculture. [Google Scholar]
  31. Mmanda, F., Mulokozi, D., Lindberg, J., Haldén, A., Mtolera, M., Kitula, R., & Lundh, T. (2020). Fish farming in Tanzania: The availability and nutritive value of local feed ingredients. Journal of Applied Aquaculture, 32(4), 341–360. https://doi.org/10.1080/10454438.2019.1708836 [Google Scholar] [Crossref] 
  32. Moazenzadeh, K., Islami, H., Zamini, A., & Soltani, M. (2017). Dietary zinc requirement of Siberian sturgeon (Acipenser baerii, brandt 1869) juveniles, based on the growth performance and blood parameters. International Aquatic Research, 9(1), 25-35. https://doi.org/10.1007/s40071-017-0153-6 [Google Scholar] [Crossref] 
  33. Nistor, V., Bocioc Sîrbu, E., Dima, F. M., Patriche, N., Athanasopoulos, L. B., Tenciu, M., & Popa, M. D. (2021). Optimization of food rations used for the pre-development of the species Acipenser baerii (J.F. Brandt, 1869) in recirculating aquaculture system. Life Science and Sustainable Development, 2(1), 68-74. https://doi.org/10.58509/lssd.v2i1.80 [Google Scholar] [Crossref] 
  34. Nyong, E. (2014). Effect of storage and anti-nutritional components in stored pelleted fish feed. International Journal of Science, Technology and Society, 2(6), 186-189. https://doi.org/10.11648/j.ijsts.20140206.14 [Google Scholar] [Crossref] 
  35. Poczyczyński, P., Gomułka, P., Woźniak, M., & Szostak, I. (2014). Preliminary study on the partial substitution of fish oil with amaranth oil in diets for rainbow trout (Oncorhynchus mykiss) fingerlings: Effects on body composition and fatty acids contents. Turkish Journal of Fisheries and Aquatic Sciences, 14(2), 343–350. https://doi.org/10.4194/1303-2712-v14_2_16 [Google Scholar] [Crossref] 
  36. Samira, H., & Mehrgan, M. (2015). The effect of replacing fishmeal in the diet with enzyme-treated soybean meal (HP310) on growth and body composition of rainbow trout fry. Molecules, 20(12), 21058–21066. https://doi.org/10.3390/molecules201219751 [Google Scholar] [Crossref] 
  37. Sandström, V., Chrysafi, A., Lamminen, M., Troell, M., Jalava, M., Piipponen, J., Siebert, S., van Hal, O., Virkki, V., & Kummu, M. (2022). Food system by-products upcycled in livestock and aquaculture feeds can increase global food supply. Nature Food, 3(9), 729–740. https://doi.org/10.1038/s43016-022-00589-6 [Google Scholar] [Crossref] 
  38. Suparmi, S., Sumarto, S., Afriana, U., & Hidayat, T. (2022). Utilization of biang fish flour (Ilisha elongata) as an enrichment material for sago noodles nutrient value. International Journal of Biomaterials, 2022(1), 8746296. https://doi.org/10.1155/2022/8746296 [Google Scholar] [Crossref] 
  39. Tadesse, A. (2023). Optimization of fish and plant production in tilapia-spinach aquaponics systems using black soldier fly larvae meal and mineral supplementation. Helix, 6(1), 1–34. https://doi.org/10.59411/mvxf3229 [Google Scholar] [Crossref] 
  40. Tugiyono, Febryano, I., Puja, Y., & Suharso. (2020). Utilization of fish waste as fish feed material as an alternative effort to reduce and use waste. Pakistan Journal of Biological Sciences, 23(5), 701-707. https://doi.org/10.3923/pjbs.2020.701.707 [Google Scholar] [Crossref] 
  41. Villasante, A., Catalán, N., Opazo, R., Dantagnan, P., & Romero, J. (2019). Effect of dietary carbohydrate-to-protein ratio on gut microbiota in Atlantic salmon (Salmo salar). Animals, 9(3), 89. https://doi.org/10.3390/ani9030089 [Google Scholar] [Crossref] 
  42. Wade, N., Skiba-Cassy, S., Dias, K., & Glencross, B. (2013). Postprandial molecular responses in the liver of the barramundi (Lates calcarifer). Fish Physiology and Biochemistry, 40(2), 427–443. https://doi.org/10.1007/s10695-013-9854-y [Google Scholar] [Crossref] 
  43. Zaman, M. N., Naser, M. N., Abdullah, A. T. M., & Khan, N. (2015). Nutrient contents of some popular freshwater and marine fish species of Bangladesh. Bangladesh Journal of Zoology, 42(2), 251-259. https://doi.org/10.3329/bjz.v42i2.23367 [Google Scholar] [Crossref] 
  44. Zhu, F., & He, Y. (2011). Study on mid-infrared transmittance spectroscopy for fast measurement of crude fat content in fish feeds based on BPNN and LS-SVM. Key Engineering Materials, 460–461, 816–820. https://doi.org/10.4028/www.scientific.net/kem.460-461.816 [Google Scholar] [Crossref]