- Abdulkhadar, U. M., ShivakumarGouda, P. S., Veeresh Kumar, G. B., & Kodancha, K. G. (2021). An assessment on residual stress measurement in FRP composites using relaxation techniques. Iranian Journal of Materials Science and Engineering, 18(3), 1-15. https://doi.org/10.22068/ijmse.2075 [Google Scholar] [Crossref]
- Asmael, M., Zeeshan, Q., & Glaissa, M. (2020). Recent applications of residual stress measurement techniques for FSW joints: A review. Jurnal Kejuruteraan, 32(3), 1-15. https://doi.org/10.17576/jkukm-2020-32(3)-01 [Google Scholar] [Crossref]
- Cui, W. (2002). A state-of-the-art review on fatigue life prediction methods for metal structures. Journal of Marine Science and Technology, 7, 43-56. https://doi.org/10.1007/s007730200012 [Google Scholar] [Crossref]
- Dive, V., & Lakade, S. (2021). Recent research progress on residual stress measurement using non-destructive testing. Materials Today: Proceedings, 47, 3282-3287. https://doi.org/10.1016/j.matpr.2021.07.094 [Google Scholar] [Crossref]
- Drude, P. (1900). Zur elektronentheorie der metalle. Annalen der Physik, 306(3), 566-613. https://doi.org/10.1002/andp.19003060312 [Google Scholar] [Crossref]
- Ehrenreich, H., & Philipp, H. R. (1962). Optical properties of Ag and Cu. physical review, 128(4), 1622-1629. https://doi.org/10.1103/PhysRev.128.1622 [Google Scholar] [Crossref]
- Fricke, W. (2017). Fatigue and fracture of ship structures. In J. Carlton, P. Jukes, & Y. S. Choo (Eds.), Encyclopedia of Maritime and Offshore Engineering. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118476406.emoe007 [Google Scholar] [Crossref]
- Gan, S., Han, Y., & Chen, F. (2018). Analysis on error factors of welding residual stress measured by hole drilling method. Transactions of the China Welding Institution, 39(10), 48-53. https://doi.org/10.12073/j.hjxb.2018390247 [Google Scholar] [Crossref]
- Ghaedamini, R., Ghassemi, A., & Atrian, A. (2018). A comparative experimental study for determination of residual stress in laminated composites using ring core, incremental hole drilling, and slitting methods. Materials Research Express, 6(2), 025205. https://doi.org/10.1088/2053-1591/aaee46 [Google Scholar] [Crossref]
- Grigorev, E., & Nosov, V. (2022). Improving quality control methods to test strengthening technologies: A multilevel model of acoustic pulse flow. Applied Sciences, 12(9), 4549. https://doi.org/10.3390/app12094549 [Google Scholar] [Crossref]
- Guo, J., Fu, H., Pan, B., & Kang, R. (2021). Recent progress of residual stress measurement methods: A review. Chinese Journal of Aeronautics, 34(2), 54-78. https://doi.org/10.1016/j.cja.2019.10.010 [Google Scholar] [Crossref]
- Hecht, E. (2002). Optics (4th Ed.). Addison-Wesley. [Google Scholar]
- Hristoforou, E., Ktena, A., Vourna, P., & Argiris, K. (2018). Dependence of magnetic permeability on residual stresses in alloyed steels. American Institute of Physics (AIP) Advances, 8(4), 047201. https://doi.org/10.1063/1.4994202 [Google Scholar] [Crossref]
- Huang, X., Liu, Z., & Xie, H. (2013). Recent progress in residual stress measurement techniques. Acta Mechanica Solida Sinica, 26(6), 570-583. https://doi.org/10.1016/S0894-9166(14)60002-1 [Google Scholar] [Crossref]
- Hüttner, B. (1995). On Brewster’s angle of metals. Journal of Applied Physics, 78(7), 4799-4801. https://doi.org/10.1063/1.359763 [Google Scholar] [Crossref]
- Iordache, V. E., Hug, E., & Buiron, N. (2003). Magnetic behaviour versus tensile deformation mechanisms in a non-oriented Fe-(3 wt.%)Si steel. Materials Science and Engineering: A, 359(1-2), 62-74. https://doi.org/10.1016/S0921-5093(03)00358-7 [Google Scholar] [Crossref]
- Jiles, D. C. (1988). Variation of the magnetic properties of AISI 4140 steels with plastic strain. Physica Status Solidi (a), 108, 417-429. [Google Scholar]
- Jiménez, L. M., García, J. J. R., Contreras, A. O., & Baleanu, D. (2017). Analysis of Drude model using fractional derivatives without singular kernels. Open Physics, 15(1), 627-636. [Google Scholar]
- Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/PhysRevB.6.4370 [Google Scholar] [Crossref]
- Kozak, J., & Gorski, Z. (2011). Fatigue strength determination of ship structural joints. Polish Maritime Research, 18. https://doi.org/10.2478/v10012-011-0009-8 [Google Scholar] [Crossref]
- Kurashkin, K., Mishakin, V., & Rudenko, A. (2019). Ultrasonic evaluation of residual stresses in welded joints of hydroelectric unit rotor frame. Materials Today: Proceedings, 11(1), 163-168. https://doi.org/10.1016/j.matpr.2018.12.125 [Google Scholar] [Crossref]
- Leggatt, R. H., Smith, D. J., Smith, S. D., & Faure, F. (1996). Development and experimental validation of the deep hole method for residual stress measurement. The Journal of Strain Analysis for Engineering Design, 31(3), 177-186. https://doi.org/10.1243/03093247v313177 [Google Scholar] [Crossref]
- Magnier, A., Scholtes, B., & Niendorf, T. (2018). On the reliability of residual stress measurements in polycarbonate samples by the hole drilling method. Polymer Testing, 71, 329-334. https://doi.org/10.1016/j.polymertesting.2018.09.024 [Google Scholar] [Crossref]
- Malitson, I. H. (1965). Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 55(10), 1205-1209. https://doi.org/10.1364/JOSA.55.001205 [Google Scholar] [Crossref]
- Markovic, M. I., & Rakic, A. D. (1990). Determination of the reflection coefficients of laser light of wavelengths λ∊(0.22 μm,200 μm) from the surface of aluminum using the Lorentz-Drude model. Applied Optics, 29(24), 3479-3483. https://doi.org/10.1364/AO.29.003479 [Google Scholar] [Crossref]
- Moharrami, R., & Sadri, M. (2018). A procedure for high residual stresses measurement using the ring‐core method. Strain, 54(4), e12270. https://doi.org/10.1111/str.12270 [Google Scholar] [Crossref]
- Nelson, D. V. (2010). Residual stress determination by hole drilling combined with optical methods. Experimental Mechanics, 50(2), 145-158. https://doi.org/10.1007/s11340-009-9329-3 [Google Scholar] [Crossref]
- Pedrotti, F. L., Pedrotti, L. M., & Pedrotti, L. S. (2017). Introduction to optics (3 ed.). Cambridge University Press. [Google Scholar]
- Perevertov, O. (2007). Influence of the residual stress on the magnetization process in mild steel. Journal of Physics D: Applied Physics, 40(4), 949. https://doi.org/10.1088/0022-3727/40/4/004 [Google Scholar] [Crossref]
- Qiu, W., Ma, L., Li, Q., Xing, H., Cheng, C., & Huang, G. (2018). A general metrology of stress on crystalline silicon with random crystal plane by using micro-Raman spectroscopy. Acta Mechanica Sinica, 34(6), 1095-1107. https://doi.org/10.1007/s10409-018-0797-5 [Google Scholar] [Crossref]
- Rakić, A. D. (1995). Algorithm for the determination of intrinsic optical constants of metal films: Application to aluminum. Applied Optics, 34(22), 4755-4767. https://doi.org/10.1364/AO.34.004755 [Google Scholar] [Crossref]
- Sepsi, M., Szobota, P., & Mertinger, V. (2022). Quasi-Non-destructive characterization of carburized case depth by an application of centerless X-ray diffractometers. Journal of Materials Engineering and Performance, 31(6), 4668-4678. https://doi.org/10.1007/s11665-022-06591-0 [Google Scholar] [Crossref]
- Shea, J. J. (2005). Modern magnetic materials - principles and applications [Book Review]. IEEE Electrical Insulation Magazine, 21(4), 57-58. https://doi/10.1109/MEI.2005.1490004 [Google Scholar]
- Song, C., Du, L., Qi, L., Li, Y., Li, X., & Li, Y. (2017). Residual stress measurement in a metal microdevice by micro Raman spectroscopy. Journal of Micromechanics and Microengineering, 27(10), 105014. https://doi.org/10.1088/1361-6439/aa8912 [Google Scholar] [Crossref]
- Tan, C. Z. (1999). Electric potential energy of the incident light and the Hamiltonian of the induced oscillators in non-absorbing isotropic dielectrics. Physica B: Condensed Matter, 269(3-4), 373-378. https://doi.org/10.1016/S0921-4526(99)00115-5 [Google Scholar] [Crossref]
- Tan, C. Z., & Arndt, J. (2001). Refractive index, optical dispersion, and group velocity of infrared waves in silica glass. Journal of Physics and Chemistry of Solids, 62(6), 1087-1092. https://doi.org/10.1016/S0022-3697(00)00285-7 [Google Scholar] [Crossref]
- Totten, G., Howes, M., & Inoue, T. (Eds.). (2002). Handbook of residual stress and deformation of steel. ASM International. [Google Scholar]
- Umeda, R., Totsuji, C., Tsuruta, K., & Totsuji, H. (2009). An FDTD analysis of nanostructured electromagnetic metamaterials using parallel computer. Materials Transactions, 50, 994-998. https://doi.org/10.2320/matertrans.MC200822 [Google Scholar] [Crossref]
- Vial, A., Grimault, A.-S., Macías, D., Barchiesi, D., & de la Chapelle, M. L. (2005). Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Physical Review B, 71(8), 085416. https://doi.org/10.1103/PhysRevB.71.085416 [Google Scholar] [Crossref]
- Vourna, P., Ktena, A., Tsarabaris, P., & Hristoforou, E. (2018). Magnetic Residual Stress Monitoring Technique for Ferromagnetic Steels. Metals, 8(8), 592. https://doi.org/10.3390/met8080592 [Google Scholar] [Crossref]
- Yoshida, S., Sasaki, T., Usui, M., Sakamoto, S., Gurney, D., & Park, I.-K. (2016). Residual stress analysis based on acoustic and optical methods. Materials, 9(2), 112. https://doi.org/10.3390/ma9020112 [Google Scholar] [Crossref]
|