Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2022, Vol. 3(1) 59-69

Calculation of Residual Stress in Ships by the Method of the Fresnel Approximation

Semi̇h Öztürk & Mustafa Kurt

pp. 59 - 69   |  DOI: https://doi.org/10.29329/actanatsci.2022.351.07   |  Manu. Number: MANU-2205-20-0002.R2

Published online: June 20, 2022  |   Number of Views: 16  |  Number of Download: 93


Abstract

Predictive maintenance techniques are developed to help determine the condition of in-service equipment in order to predict when maintenance should be performed. There is a need for cost-performance effective approaches and methods for predictive maintenance that can make non-destructive on-site measurements to predict residual stress-induced critical faults in large metal structures, such as ships. In this study, an optical method based on the calculation of the non-destructive surface magnetic permeability coefficient is proposed for monitoring the residual stress distribution in AISI4040 and DUPLEX materials. In our proposed new method for determining theoretically the residual stress at the joint site of large plates in ships, the Lorentz-Drude model and the Fresnel approximation were used. Our results show that the new optical technique proposed in this study is sufficient and thriving for the determination of residual stresses in large metal structures.

Keywords: AISI4140, DUPLEX, Residual Stress, Fresnel Approach, Brewster Angle


How to Cite this Article?

APA 6th edition
Ozturk, S. & Kurt, M. (2022). Calculation of Residual Stress in Ships by the Method of the Fresnel Approximation . Acta Natura et Scientia, 3(1), 59-69. doi: 10.29329/actanatsci.2022.351.07

Harvard
Ozturk, S. and Kurt, M. (2022). Calculation of Residual Stress in Ships by the Method of the Fresnel Approximation . Acta Natura et Scientia, 3(1), pp. 59-69.

Chicago 16th edition
Ozturk, Semi̇h and Mustafa Kurt (2022). "Calculation of Residual Stress in Ships by the Method of the Fresnel Approximation ". Acta Natura et Scientia 3 (1):59-69. doi:10.29329/actanatsci.2022.351.07.

References
  1. Abdulkhadar, U. M., ShivakumarGouda, P. S., Veeresh Kumar, G. B., & Kodancha, K. G. (2021). An assessment on residual stress measurement in FRP composites using relaxation techniques. Iranian Journal of Materials Science and Engineering, 18(3), 1-15. https://doi.org/10.22068/ijmse.2075 [Google Scholar] [Crossref] 
  2. Asmael, M., Zeeshan, Q., & Glaissa, M. (2020). Recent applications of residual stress measurement techniques for FSW joints: A review. Jurnal Kejuruteraan, 32(3), 1-15. https://doi.org/10.17576/jkukm-2020-32(3)-01 [Google Scholar] [Crossref] 
  3. Cui, W. (2002). A state-of-the-art review on fatigue life prediction methods for metal structures. Journal of Marine Science and Technology, 7, 43-56. https://doi.org/10.1007/s007730200012 [Google Scholar] [Crossref] 
  4. Dive, V., & Lakade, S. (2021). Recent research progress on residual stress measurement using non-destructive testing. Materials Today: Proceedings, 47, 3282-3287. https://doi.org/10.1016/j.matpr.2021.07.094 [Google Scholar] [Crossref] 
  5. Drude, P. (1900). Zur elektronentheorie der metalle. Annalen der Physik, 306(3), 566-613. https://doi.org/10.1002/andp.19003060312 [Google Scholar] [Crossref] 
  6. Ehrenreich, H., & Philipp, H. R. (1962). Optical properties of Ag and Cu. physical review, 128(4), 1622-1629. https://doi.org/10.1103/PhysRev.128.1622 [Google Scholar] [Crossref] 
  7. Fricke, W. (2017). Fatigue and fracture of ship structures. In J. Carlton, P. Jukes, & Y. S. Choo (Eds.), Encyclopedia of Maritime and Offshore Engineering. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118476406.emoe007 [Google Scholar] [Crossref] 
  8. Gan, S., Han, Y., & Chen, F. (2018). Analysis on error factors of welding residual stress measured by hole drilling method. Transactions of the China Welding Institution, 39(10), 48-53. https://doi.org/10.12073/j.hjxb.2018390247 [Google Scholar] [Crossref] 
  9. Ghaedamini, R., Ghassemi, A., & Atrian, A. (2018). A comparative experimental study for determination of residual stress in laminated composites using ring core, incremental hole drilling, and slitting methods. Materials Research Express, 6(2), 025205. https://doi.org/10.1088/2053-1591/aaee46 [Google Scholar] [Crossref] 
  10. Grigorev, E., & Nosov, V. (2022). Improving quality control methods to test strengthening technologies: A multilevel model of acoustic pulse flow. Applied Sciences, 12(9), 4549. https://doi.org/10.3390/app12094549 [Google Scholar] [Crossref] 
  11. Guo, J., Fu, H., Pan, B., & Kang, R. (2021). Recent progress of residual stress measurement methods: A review. Chinese Journal of Aeronautics, 34(2), 54-78. https://doi.org/10.1016/j.cja.2019.10.010 [Google Scholar] [Crossref] 
  12. Hecht, E. (2002). Optics (4th Ed.). Addison-Wesley. [Google Scholar]
  13. Hristoforou, E., Ktena, A., Vourna, P., & Argiris, K. (2018). Dependence of magnetic permeability on residual stresses in alloyed steels. American Institute of Physics (AIP) Advances, 8(4), 047201. https://doi.org/10.1063/1.4994202 [Google Scholar] [Crossref] 
  14. Huang, X., Liu, Z., & Xie, H. (2013). Recent progress in residual stress measurement techniques. Acta Mechanica Solida Sinica, 26(6), 570-583. https://doi.org/10.1016/S0894-9166(14)60002-1 [Google Scholar] [Crossref] 
  15. Hüttner, B. (1995). On Brewster’s angle of metals. Journal of Applied Physics, 78(7), 4799-4801. https://doi.org/10.1063/1.359763 [Google Scholar] [Crossref] 
  16. Iordache, V. E., Hug, E., & Buiron, N. (2003). Magnetic behaviour versus tensile deformation mechanisms in a non-oriented Fe-(3 wt.%)Si steel. Materials Science and Engineering: A, 359(1-2), 62-74. https://doi.org/10.1016/S0921-5093(03)00358-7 [Google Scholar] [Crossref] 
  17. Jiles, D. C. (1988). Variation of the magnetic properties of AISI 4140 steels with plastic strain. Physica Status Solidi (a), 108, 417-429. [Google Scholar]
  18. Jiménez, L. M., García, J. J. R., Contreras, A. O., & Baleanu, D. (2017). Analysis of Drude model using fractional derivatives without singular kernels. Open Physics, 15(1), 627-636. [Google Scholar]
  19. Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/PhysRevB.6.4370 [Google Scholar] [Crossref] 
  20. Kozak, J., & Gorski, Z. (2011). Fatigue strength determination of ship structural joints. Polish Maritime Research, 18. https://doi.org/10.2478/v10012-011-0009-8 [Google Scholar] [Crossref] 
  21. Kurashkin, K., Mishakin, V., & Rudenko, A. (2019). Ultrasonic evaluation of residual stresses in welded joints of hydroelectric unit rotor frame. Materials Today: Proceedings, 11(1), 163-168. https://doi.org/10.1016/j.matpr.2018.12.125 [Google Scholar] [Crossref] 
  22. Leggatt, R. H., Smith, D. J., Smith, S. D., & Faure, F. (1996). Development and experimental validation of the deep hole method for residual stress measurement. The Journal of Strain Analysis for Engineering Design, 31(3), 177-186. https://doi.org/10.1243/03093247v313177 [Google Scholar] [Crossref] 
  23. Magnier, A., Scholtes, B., & Niendorf, T. (2018). On the reliability of residual stress measurements in polycarbonate samples by the hole drilling method. Polymer Testing, 71, 329-334. https://doi.org/10.1016/j.polymertesting.2018.09.024 [Google Scholar] [Crossref] 
  24. Malitson, I. H. (1965). Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 55(10), 1205-1209. https://doi.org/10.1364/JOSA.55.001205 [Google Scholar] [Crossref] 
  25. Markovic, M. I., & Rakic, A. D. (1990). Determination of the reflection coefficients of laser light of wavelengths λ∊(0.22 μm,200 μm) from the surface of aluminum using the Lorentz-Drude model. Applied Optics, 29(24), 3479-3483. https://doi.org/10.1364/AO.29.003479 [Google Scholar] [Crossref] 
  26. Moharrami, R., & Sadri, M. (2018). A procedure for high residual stresses measurement using the ring‐core method. Strain, 54(4), e12270. https://doi.org/10.1111/str.12270 [Google Scholar] [Crossref] 
  27. Nelson, D. V. (2010). Residual stress determination by hole drilling combined with optical methods. Experimental Mechanics, 50(2), 145-158. https://doi.org/10.1007/s11340-009-9329-3 [Google Scholar] [Crossref] 
  28. Pedrotti, F. L., Pedrotti, L. M., & Pedrotti, L. S. (2017). Introduction to optics (3 ed.). Cambridge University Press. [Google Scholar]
  29. Perevertov, O. (2007). Influence of the residual stress on the magnetization process in mild steel. Journal of Physics D: Applied Physics, 40(4), 949. https://doi.org/10.1088/0022-3727/40/4/004 [Google Scholar] [Crossref] 
  30. Qiu, W., Ma, L., Li, Q., Xing, H., Cheng, C., & Huang, G. (2018). A general metrology of stress on crystalline silicon with random crystal plane by using micro-Raman spectroscopy. Acta Mechanica Sinica, 34(6), 1095-1107. https://doi.org/10.1007/s10409-018-0797-5 [Google Scholar] [Crossref] 
  31. Rakić, A. D. (1995). Algorithm for the determination of intrinsic optical constants of metal films: Application to aluminum. Applied Optics, 34(22), 4755-4767. https://doi.org/10.1364/AO.34.004755 [Google Scholar] [Crossref] 
  32. Sepsi, M., Szobota, P., & Mertinger, V. (2022). Quasi-Non-destructive characterization of carburized case depth by an application of centerless X-ray diffractometers. Journal of Materials Engineering and Performance, 31(6), 4668-4678. https://doi.org/10.1007/s11665-022-06591-0 [Google Scholar] [Crossref] 
  33. Shea, J. J. (2005). Modern magnetic materials - principles and applications [Book Review]. IEEE Electrical Insulation Magazine, 21(4), 57-58. https://doi/10.1109/MEI.2005.1490004 [Google Scholar]
  34. Song, C., Du, L., Qi, L., Li, Y., Li, X., & Li, Y. (2017). Residual stress measurement in a metal microdevice by micro Raman spectroscopy. Journal of Micromechanics and Microengineering, 27(10), 105014. https://doi.org/10.1088/1361-6439/aa8912 [Google Scholar] [Crossref] 
  35. Tan, C. Z. (1999). Electric potential energy of the incident light and the Hamiltonian of the induced oscillators in non-absorbing isotropic dielectrics. Physica B: Condensed Matter, 269(3-4), 373-378. https://doi.org/10.1016/S0921-4526(99)00115-5 [Google Scholar] [Crossref] 
  36. Tan, C. Z., & Arndt, J. (2001). Refractive index, optical dispersion, and group velocity of infrared waves in silica glass. Journal of Physics and Chemistry of Solids, 62(6), 1087-1092. https://doi.org/10.1016/S0022-3697(00)00285-7 [Google Scholar] [Crossref] 
  37. Totten, G., Howes, M., & Inoue, T. (Eds.). (2002). Handbook of residual stress and deformation of steel. ASM International. [Google Scholar]
  38. Umeda, R., Totsuji, C., Tsuruta, K., & Totsuji, H. (2009). An FDTD analysis of nanostructured electromagnetic metamaterials using parallel computer. Materials Transactions, 50, 994-998. https://doi.org/10.2320/matertrans.MC200822 [Google Scholar] [Crossref] 
  39. Vial, A., Grimault, A.-S., Macías, D., Barchiesi, D., & de la Chapelle, M. L. (2005). Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Physical Review B, 71(8), 085416. https://doi.org/10.1103/PhysRevB.71.085416 [Google Scholar] [Crossref] 
  40. Vourna, P., Ktena, A., Tsarabaris, P., & Hristoforou, E. (2018). Magnetic Residual Stress Monitoring Technique for Ferromagnetic Steels. Metals, 8(8), 592. https://doi.org/10.3390/met8080592 [Google Scholar] [Crossref] 
  41. Yoshida, S., Sasaki, T., Usui, M., Sakamoto, S., Gurney, D., & Park, I.-K. (2016). Residual stress analysis based on acoustic and optical methods. Materials, 9(2), 112. https://doi.org/10.3390/ma9020112 [Google Scholar] [Crossref]