- Akbaba, A. İ., & Akbulut, E. (2021). 3 boyutlu yazıcılar ve kullanım alanları [3D printers and areas of usage]. ETÜ Sentez İktisadi ve İdari Bilimler Dergisi, 3, 19-46. https://doi.org/10.47358/sentez.2020.13 [Google Scholar] [Crossref]
- Anderson, I. (2017). Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid. 3D Printing and Additive Manufacturing, 4(2), 110-115. https://doi.org/10.1089/3dp.2016.0054 [Google Scholar] [Crossref]
- Dou, H., Cheng, Y., Ye, W., Zhang, D., Li, J., Miao, Z., & Rudykh, S. (2020). Effect of process parameters on tensile mechanical properties of 3D printing continuous carbon fiber-reinforced PLA composites. Materials, 13(17), 3850. https://doi.org/10.3390/ma13173850 [Google Scholar] [Crossref]
- Kalsoom, U., Nesterenko, P. N., & Paull, B. (2016). Recent developments in 3D printable composite materials. RSC Advances, 6, 60355-60371. https://doi.org/10.1039/C6RA11334F [Google Scholar] [Crossref]
- Kamer, M. S., Temiz, S., Yaykasli, H., Kaya, A., & Akay, O. E. (2022). Effect of printing speed on FDM 3D-printed PLA samples produced using different two printers. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 438-448. https://doi.org/10.46519/ij3dptdi.1088805 [Google Scholar] [Crossref]
- Khosravani, M. R., Berto, F., Ayatollahi, & Reinicke, T. (2022). Characterization of 3D-printed PLA parts with different raster orientations and printing speeds. Scientific Reports, 12(1), 1016. https://doi.org/10.1038/s41598-022-05005-4 [Google Scholar] [Crossref]
- Kroll, E., & Artzi, D. (2011). Enhancing aerospace engineering students’ learning with 3D printing wind-tunnel models. Rapid Prototyping Journal, 17(5), 393-402. https://doi.org/10.1108/13552541111156522 [Google Scholar] [Crossref]
- Ming, Y., Zhang, S., Han, W., Wang, B., Duan, Y., & Xiao, H. (2020). Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites. Additive Manufacturing, 33, 101184. https://doi.org/10.1016/j.addma.2020.101184 [Google Scholar] [Crossref]
- Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32, 773–785. https://doi.org/10.1038/nbt.2958 [Google Scholar] [Crossref]
- Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications, and challenges. Composite Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012 [Google Scholar] [Crossref]
- O’Neill, B. (2022). 3D print speed: What it is and why it matters. Retrieved on October 18, 2023, from https://www.wevolver.com/article/3d-print-speed-what-it-is-and-why-it-matters [Google Scholar]
- Popescu, D., Zapciu, A., Amza, C., Baciu, F., & Marinescu, R. (2018). FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, 157-166. https://doi.org/10.1016/j.polymertesting.2018.05.020 [Google Scholar] [Crossref]
- Short, D. B. (2015). Use of 3D printing by museums: Educational exhibits, artifact education, and artifact restoration. 3D Printing and Additive Manufacturing, 2(4), 209-215. https://doi.org/10.1089/3dp.2015.0030 [Google Scholar] [Crossref]
- Franco-Urquiza, E. A., Escamilla, Y. R., Llanas, P. I. A. (2021). Characterization of 3D printing on jute fabrics. Polymers, 13(19), 3202. https://doi.org/10.3390/polym13193202 [Google Scholar] [Crossref]
- Yaman, U., Butt, N., Sacks, E., & Hoffmann, C. (2016). Slice coherence in a query-based architecture for 3D heterogeneous printing. Computer-Aided Design, 75-76, 27-38. https://doi.org/10.1016/j.cad.2016.02.005 [Google Scholar] [Crossref]
- Yang, T. -C., & Yeh, C. -H. (2020). Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using fused deposition modeling (FDM): The effects of printing speed. Polymers, 12(6), 1334. https://doi.org/10.3390/polym12061334 [Google Scholar] [Crossref]
|