Acta Nat. Sci.   |  e-ISSN: 2718-0638

Original article | Acta Natura et Scientia 2023, Vol. 4(2) 114-125

Impact of Different Nitrogen Sources and Concentrations on the Growth and Biochemical Structure of Lemna minor  

Hatice Tekoğul, Hülya Eminçe Saygı, Aysun Kop, Yaşar Durmaz & Ayberk Bayrak

pp. 114 - 125   |  DOI: https://doi.org/10.29329/actanatsci.2023.354.2   |  Manu. Number: MANU-2304-10-0004.R1

Published online: August 14, 2023  |   Number of Views: 32  |  Number of Download: 188


Abstract

This study aimed to examine the impact of various nitrogen sources and concentrations on the growth and biochemical composition of Lemna minor. Specifically, three nitrogen sources, namely ammonium, nitrate, and urea, were utilized. These nitrogen sources were incorporated into the Hoagland nutrient medium at two different concentrations: 2500 µML^{-1} and 5000 µML^{-1}. The impact of various nitrogen concentrations on the biochemistry of L. minor, including the number of individuals, chlorophyll-a levels, carotene content, dry matter, and protein content was examined. The experimental results revealed that the 7th, 5th, and 6th groups exhibited the highest relative frond number, while no significant statistical difference (p>0.05) was observed between the 5000 µML^{-1} and 2500 µML^{-1} groups among all experimental groups. The 2nd, 7th, and 5th groups displayed the highest relative growth rate. The 4th group using NH_{4}-N as the source exhibited the highest total carotene and chlorophyll-a content. Although there were no significant differences in the dry matter and protein values of L. minor, the protein ratio was higher in the 3rd and 4th groups with NH_{4}-N as the source compared to the other groups. The results indicate that NO_{3} nitrogen is the most suitable nitrogen source for promoting the growth and biochemical composition of L. minor, as evidenced by an increase in relative frond number and relative growth. On the other hand, NH_{4} nitrogen showed favorable effects on protein, carotene, and chlorophyll-a content. Additionally, the experimental groups with a nitrogen concentration of 2500 µML^{-1} yielded better overall results. Interestingly, in terms of protein efficiency, it was observed that nitrogen concentrations played a more significant role than nitrogen sources, and groups with lower dilution rates exhibited superior outcomes.

Keywords: Lemna minor, Nitrogen sources, Concentration, Growth, Protein, Chlorophyll-a, Carotene


How to Cite this Article?

APA 6th edition
Tekogul, H., Saygi, H.E., Kop, A., Durmaz, Y. & Bayrak, A. (2023). Impact of Different Nitrogen Sources and Concentrations on the Growth and Biochemical Structure of Lemna minor   . Acta Natura et Scientia, 4(2), 114-125. doi: 10.29329/actanatsci.2023.354.2

Harvard
Tekogul, H., Saygi, H., Kop, A., Durmaz, Y. and Bayrak, A. (2023). Impact of Different Nitrogen Sources and Concentrations on the Growth and Biochemical Structure of Lemna minor   . Acta Natura et Scientia, 4(2), pp. 114-125.

Chicago 16th edition
Tekogul, Hatice, Hulya Emince Saygi, Aysun Kop, Yasar Durmaz and Ayberk Bayrak (2023). "Impact of Different Nitrogen Sources and Concentrations on the Growth and Biochemical Structure of Lemna minor   ". Acta Natura et Scientia 4 (2):114-125. doi:10.29329/actanatsci.2023.354.2.

References
  1. Akel, E. (2006). Comparative studies on feeding possibilities of duckweed (Lemna minor L.) in aquarium environment of Singaporean red-cheeked freshwater turtles (Pseudemys scripta elegans). [Ph.D. Thesis. Kütahya Dumlupınar University] [Google Scholar]
  2. Alaerts, G. J., Rahman Mahbubar, MD., & Kelderman, P. (1996). Performance analysis of a full-scale duckweed-covered sewage lagoon. Water Research, 30(4), 843-852. https://doi.org/10.1016/0043-1354(95)00234-0 [Google Scholar] [Crossref] 
  3. AOAC. (1990). Official methods of analysis (pp. 1028-1039). In Helrich, K. (Ed.), Association of Official Analytical Chemists International. 15th ed. Association of Official Analytical Chemists Inc. [Google Scholar]
  4. Appenroth, K. J., Sree, K. S., Böhm, V., Hammann, S., Vetter, W., Leiterer, M., & Jahreis, G. (2017). Nutritional value of duckweeds (Lemnaceae) as human food. Food Chemistry, 217, 266-273. https://doi.org/10.1016/j.foodchem.2016.08.116 [Google Scholar] [Crossref] 
  5. Beer, S., Björk, M., & Beardall, J. (2014). Photosynthesis in the marine environment. Wiley-Blackwell. [Google Scholar]
  6. Bergmann, B. A., Cheng, J., Classen, J., & Stomp, A. -M. (2000). In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresource Technology, 73(1), 13-20. https://doi.org/10.1016/S0960-8524(99)00137-6 [Google Scholar] [Crossref] 
  7. Boussadia, O., Steppe, K., Zgallai, H., El Hadj, S. B., Braham, M., Lemeur, R., & Van Labeke, M. C. (2010). Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’and ‘Koroneiki’. Scientia Horticulturae, 123(3), 336-342. https://doi.org/10.1016/j.scienta.2009.09.023 [Google Scholar] [Crossref] 
  8. Brentrup, F., & Pallière, C. (2010). Nitrogen use efficiency as an agro-environmental indicator. Proceedings of the OECD Workshop on Agrienvironmental Indicators: Lessons Learned and Future Directions, Switzerland, pp. 1-9. [Google Scholar]
  9. Britto, D. T., & Kronzucker, H. J. (2002). NH4+ toxicity in higher plants: A critical review. Journal of Plant Physiology, 159(6), 567-584. https://doi.org/10.1078/0176-1617-0774 [Google Scholar] [Crossref] 
  10. Bütünoğlu, A. (2018). Evaluation of nutrient removal by floating wetland and aquatic plants in water resources. [MSc. Thesis. Ankara TR Ministry of Agriculture and Forestry, General Directorate of Water Management]. [Google Scholar]
  11. Caicedo, J. R., van der Steen, N. P., Arce, O., & Gijzen, H. J. (2000). Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Research, 34(15), 3829-3835. https://doi.org/10.1016/S0043-1354(00)00128-7 [Google Scholar] [Crossref] 
  12. Cao, X., Ma, L. Q., & Tu, C. (2004). Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environmental Pollution, 128(3), 317-325. https://doi.org/10.1016/j.envpol.2003.09.018 [Google Scholar] [Crossref] 
  13. Carpenter, S. R., & Lodge, D. M. (1986) Effects of submersed macrophytes on ecosystem processes. Aquatic Botany, 26, 341-370. https://doi.org/10.1016/0304-3770(86)90031-8 [Google Scholar] [Crossref] 
  14. Cedergreen, N., & Madsen, T. V. (2002). Nitrogen uptake by the floating macrophyte Lemna minor. New Phytologist, 155(2), 285-292. https://doi.org/10.1046/j.1469-8137.2002.00463.x [Google Scholar] [Crossref] 
  15. Chapman, R. L. (2013). Algae: The world’s most important “plants”—an introduction. Mitigation and Adaptation Strategies for Global Change, 18(1), 5-12. https://doi.org/10.1007/s11027-010-9255-9 [Google Scholar] [Crossref] 
  16. Chaturvedi, K. M. M., Langote, D. S., & Asolekar, R. S. (2003). Duckweed-fed fisheries for treatment of low strength community waste water. WWWTM Newsletter, Asian Institute of Technology, India. https://ait.ac.th/ [Google Scholar]
  17. Coşkun, Ö. F., Aydın, D., Akıska, S., Özel, H. B., & Varol, T. (2018). Determination of the duckweed species in Turkey. Journal of Bartın Faculty of Forestry, 20(1), 145-151. http://doi.org/10.24011/barofd.406868 [Google Scholar]
  18. Culley Jr, D. D., & Epps, E. A. (1973). Use of duckweed for waste treatment and animal feed. Water Pollution Control Federation, 45(2), 337-347. [Google Scholar]
  19. Dayıoğlu, H., Özyurt, M. S., Aker, M. E., Çaycı, M. K., & Solak, C. N. (2006). Pseudemys scripta elegans’ın akvaryum ortamında Lemna minor L. ile besleme imkanları üzerine bir araştırma [A study on feeding oppurtinies of Pseudemys scripta elegans fed with Lemna minor L. in aquarium]. Dumlupınar Üniversitesi Fen Bilimleri Dergisi, (011), 1-10. [Google Scholar]
  20. Ericsson, T., Larsson, C. -M., & Tillberg, E. (1982). Growth responses of Lemna to different levels of nitrogen limitation. Zeitschrift für Pflanzenphysiologie, 105(4), 331-340. https://doi.org/10.1016/S0044-328X(82)80029-9 [Google Scholar] [Crossref] 
  21. Fang, Y. Y., Babourina, O., Rengel, Z., Yang, X. E., & Pu, P. M. (2007). Ammonium and nitrate uptake by the floating plant Landoltia punctata. Annals of Botany, 99(2), 365-370. https://doi.org/10.1093/aob/mcl264 [Google Scholar] [Crossref] 
  22. Foundation for Water Research (FWR). (2015). Toxic algal blooms in drinking water reservoirs. foundation for water research. Retrieved on June 22, 2023, from http://www.fwr.org/drnkwatr/algaltox.htm [Google Scholar]
  23. Gojon, A., Krouk, G., Perrine-Walker, F., & Laugier, E. (2011). Nitrate transceptor(s) in plants. Journal of Experimental Botany, 62(7), 2299-2308. https://doi.org/10.1093/jxb/erq419 [Google Scholar] [Crossref] 
  24. Gökyay, O., & Balcıgil, M. (2017). Ham ve sentetik atıksularda su mercimeği (Lemna minor L.) kullanılarak karbon ve besi maddelerinin gideriminin incelenmesi ve karşılaştırılması [The investigation and comparison of carbon and nutrient removal from domestic and synthetic wastewaters using duckweed (Lemna minor L.)]. Marmara Fen Bilimleri Dergisi, 29(4), 124-130. https://doi.org/10.7240/marufbd.369743 [Google Scholar] [Crossref] 
  25. Iatrou, E. I., Kora, E., & Stasinakis, A. S. (2019). Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with Lemna minor and Lemna gibba. Environmental Technology, 40(20), 2649-2656. https://doi.org/10.1080/09593330.2018.1448002 [Google Scholar] [Crossref] 
  26. Jensen, J., Sorokin, N., Dirven-van Breemen, E. M., Bogolte, T., Erlacher, E., Ehlers, C., Ter Laak, T., Hartnik, T., Bierkens, J., Rutgers, M., Mesman, M. (2006). A triad-based selection of tools for site-specific assessment of ecological risk (pp. 65-116). In Jensen, J., & Mesman, M. (Eds.), Ecological risk assessment of contaminated land-Decision support for site specific investigations. Liberation: RIVM report number 711701047. Accessed June 22, 2023, from https://www.rivm.nl/bibliotheek/rapporten/711701047.pdf [Google Scholar]
  27. Kara, B. (2006). Determination of nitrogen uptake and utilization efficiency of corn with different plant densities and different nitrogen doses in Çukurova conditions. [Ph.D. Thesis. Adana Çukurova University]. [Google Scholar]
  28. Karaşahin, B. (1998). A research on the benthic fauna of Lake Kovada and Kovada Channel. [M.Sc. Thesis. Isparta Süleyman Demirel University] [Google Scholar]
  29. Körner, S., Lyatuu, G. B., & Vermaat, J. E. (1998). The influence of Lemna gibba L. on the degradation of organic material in duckweed-covered domestic wastewater. Water Research, 32(10), 3092-3098. https://doi.org/10.1016/S0043-1354(98)00054-2 [Google Scholar] [Crossref] 
  30. Latrou, E. I., Kora, E., & Stasinakis, A. S. (2019). Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with Lemna minor and Lemna gibba. Environmental Technology, 40(20), 2649-2656, https://doi.org/10.1080/09593330.2018.1448002 [Google Scholar] [Crossref] 
  31. Leblebici, Z. (2010). Effect of nitrate, phosphate and sulphate on accumulation of some heavy metals in members of duckweed spread in Turkey. [Ph.D. Thesis. Kayseri Erciyes University]. [Google Scholar]
  32. Leng, R. A. (1999). Duckweed: A tiny aquatic plant with enormous potential for agriculture and environment. Proceedings of the 47th International Conference on Environmental Systems, South Carolina. pp. ICES-2017-281. [Google Scholar]
  33. Leng, R. A., Stambolie, J. H., & Bell, R. (1995). Duckweed - a potential high-protein feed resource for domestic animals and fish. Livestock Research for Rural Development, 7(1), 5. [Google Scholar]
  34. Li, G., Li, B., Dong, G., Feng, X., Kronzucker, H. J., & Shi, W. (2013). Ammonium-induced shoot ethylene production is associated with the inhibition of lateral root formation in Arabidopsis. Journal of Experimental Botany, 64(5), 1413-1425. https://doi.org/10.1093/jxb/ert019 [Google Scholar] [Crossref] 
  35. Madsen, J. D. (2009). Eurasian watermilfoil. In L. A. Gettys, W. T. Haller, & M. Bellaud (Eds.), Biology and control of aquatic plants: A best management practices handbook (pp. 95-98). Accessed June 22, 2023, from https://plants-archive.ifas.ufl.edu/wp-content/uploads/files/mng/AERF_handbook.pdf [Google Scholar]
  36. Madsen, J. D. (2023). Impact of invasive aquatic plants on aquatic biology. In L. A. Gettys, W. T. Haller, & D. G. Petty (Eds.), Biology and control of aquatic plants: A Best Management Practices Handbook. 4th edition (pp. 1-6). Aquatic Ecosystem Restoration Foundation. [Google Scholar]
  37. Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W., & Westlake, D. F. (2001). The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444(1), 71-84. https://doi.org/10.1023/A:1017520800568 [Google Scholar] [Crossref] 
  38. Oron, G., Porath, D., & Jansen, H. (1987). Performance of the duckweed species Lemna gibba on municipal wastewater for effluent renovation and protein production. Biotechnology and Bioengineering, 29(2), 258-268. https://doi.org/10.1002/bit.260290217 [Google Scholar] [Crossref] 
  39. Petersen, F., Demann, J., Restemeyer, D., Ulbrich, A., Olfs, H. W., Westendarp, H., & Appenroth, K. J. (2021). Influence of the nitrate-N to ammonium-N ratio on relative growth rate and crude protein content in the duckweeds Lemna minor and Wolffiella hyalina. Plants, 10(8), 1741. https://doi.org/10.3390/plants10081741 [Google Scholar] [Crossref] 
  40. Rataj, K., & Horeman, T. J. (1977). Aquarium plants- their identification, cultivation and ecology. T.F.H. Publications, Inc. [Google Scholar]
  41. Rooijakkers, P. (2016). Photosynthesis model to predict duckweed growth at the Ecoferm greenhouse. [Bachelor Thesis. Wageningen University & Research]. [Google Scholar]
  42. Rudolph, H. J., & Voigt, J. U. (1986). Effects of NH+4-N and NO+3-N on growth and metabolism of Sphagnum magellanicum. Physiologia Plantarum, 66(2), 339-343. https://doi.org/10.1111/J.1399-3054.1986.TB02429.X [Google Scholar] [Crossref] 
  43. Sánchez, M. D., Mantell, C., Rodríguez, M., Martínez de la Ossa, E., Lubián, L. M., & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66(2), 245-251. https://doi.org/10.1016/j.jfoodeng.2004.03.021 [Google Scholar] [Crossref] 
  44. Saygıdeğer, S. (1996). Lemna gibba L. ve Lemna minor L., (Lemnaceae)’nin morfolojik anatomik, ekolojik ve fizyolojik özellikleri. Ekoloji, 5(18), 8-11. [Google Scholar]
  45. Saygıdeğer, S. (1997). Seyhan Nehrinde bazı su bitkileri üzerine tarımsal kimyasalların etkileri [The effects of agricultural chemicals on some aquatic plants in the Seyhan River]. Hacettepe Fen ve Mühendislik Bilimleri Dergisi Seri A, 18, 35-43. [Google Scholar]
  46. Saygıdeğer, S. D., Keser, G., & Dogan, M. (2013). Effects of lead on chlorophyll content, total nitrogen, and antioxidant enzyme activities in duckweed (Lemna minor). International Journal of Agriculture and Biology, 15(1), 145-148. [Google Scholar]
  47. Skillicorn, P., Spira, W., & Journey, W. (1993). Duckweed aquaculture: A new aquatic farming system for developing countries. World Bank. [Google Scholar]
  48. Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. W. H. Freeman and Co. [Google Scholar]
  49. Sońta, M., Rekiel, A., & Batorska, M. (2019). Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture – A review. Annals of Animal Science, 19(2), 257-271. https://doi.org/10.2478/aoas-2018-0048 [Google Scholar] [Crossref] 
  50. Topal, M., Karagözoğlu, B., Öbek, E., & Topal, I. (2011). Usage of some duckweeds in nutrient removal. Mehmet Akif Ersoy University Journal of the Graduate School of Natural and Applied Sciences, 2(2), 12-28. [Google Scholar]
  51. von Wirén, N., Gazzarrini, S., Gojon, A., & Frommer, W. B. (2000). The molecular physiology of ammonium uptake and retrieval. Current Opinion in Plant Biology, 3(3), 254-261. https://doi.org/10.1016/S1369-5266(00)80074-6 [Google Scholar] [Crossref] 
  52. Wanapat, M. (1994). Supplementation of straw-based diets for ruminants in Thailand. Proceedings of Sustainable Animal Production and the Environment. The 7th AAAP Animal Science Congress, Indonesia. pp. 25-38. [Google Scholar]
  53. Wang, C., Zhang, S. H., Li, W., Wang, P. F., & Li, L. (2011). Nitric oxide supplementation alleviates ammonium toxicity in the submerged macrophyte Hydrilla verticillata (Lf) Royle. Ecotoxicology and Environmental Safety, 74(1), 67-73. [Google Scholar]
  54. Wang, W., Yang, C., Tang, X., Gu, X., Zhu, Q., Pan, K., Hu, Q., & Ma, D. (2014). Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L. Environmental Science and Pollution Research, 21(24), 14202-14210. https://doi.org/10.1007/s11356-014-3353-2 [Google Scholar] [Crossref] 
  55. Wersal, R. M., & Madsen, J. D. (2012). Aquatic plants their uses and risks. A review of the global status of aquatic plants. FAO, Rome. 97 p. [Google Scholar]
  56. Wett, B., & Rauch, W. (2003). The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Research, 37(5), 1100-1110. https://doi.org/10.1016/S0043-1354(02)00440-2 [Google Scholar] [Crossref] 
  57. Whitehead, A. J., Lo, K. V., & Bulley, N. R. (1987). The effect of hydraulic retention time and duckweed cropping rate on nutrient removal from dairy barn wastewater. In K. R. Reddy and W. H. Smith (Eds.), Aquatic Plants for Water Treatment and Resource Recovery (pp. 697-703). Magnolia Publishing Inc. [Google Scholar]
  58. Yılmaz, Z. (2004). Nutrient removal from S.U. campus wastewater by duckweed (Lemna minor L.) [M.Sc. Thesis. Selçuk University]. [Google Scholar]
  59. Zou, N., & Richmond, A. (2000). Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). Journal of Applied Phycology, 12, 349-354. https://doi.org/10.1023/A:1008151004317 [Google Scholar] [Crossref]